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Abstract We investigate information processing in ran-

domly connected recurrent neural networks. It has been

shown previously that the computational capabilities of

these networks are maximized when the recurrent layer is

close to the border between a stable and an unstable

dynamics regime, the so called edge of chaos. The reasons,

however, for this maximized performance are not com-

pletely understood. We adopt an information-theoretical

framework and are for the first time able to quantify the

computational capabilities between elements of these net-

works directly as they undergo the phase transition to

chaos. Specifically, we present evidence that both infor-

mation transfer and storage in the recurrent layer are

maximized close to this phase transition, providing an

explanation for why guiding the recurrent layer toward the

edge of chaos is computationally useful. As a consequence,

our study suggests self-organized ways of improving per-

formance in recurrent neural networks, driven by input

data. Moreover, the networks we study share important

features with biological systems such as feedback con-

nections and online computation on input streams. A key

example is the cerebral cortex, which was shown to also

operate close to the edge of chaos. Consequently, the

behavior of model systems as studied here is likely to shed

light on reasons why biological systems are tuned into this

specific regime.

Keywords Recurrent neural networks � Reservoir

computing � Information transfer � Active information

storage � Phase transition

Introduction

Reservoir computing (RC) is a recent paradigm in the field

of recurrent neural networks (for a recent overview, see

Lukosevicius and Jaeger (2009)). RC approaches have

been employed as mathematical models for generic cortical

microcircuits, to investigate and explain computations in

neocortical columns (see e.g., Maass et al. (2002)). A key

element of reservoir computing approaches is the randomly

constructed, fixed hidden layer—typically, only connec-

tions to output units are trained.

A fundamental question is how the recurrent hidden

layer or reservoir should be prepared, designed or guided,

to best facilitate the training of connections to output units

and consequently maximize task performance. It has been

previously shown that the ability of reservoir computing

networks to achieve the desired computational outcome is
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maximized when the network is prepared in a state near the

edge of chaos (Legenstein and Maass 2007a, b; Büsing

et al. 2010). This refers to a critical state between ordered

dynamics (where disturbances quickly die out) and chaotic

dynamics (where disturbances are amplified). This property

is particularly interesting because of evidence in the liter-

ature that cortical circuits are tuned to criticality (see e.g.,

Beggs and Plenz (2003), Chialvo (2004), Beggs (2008)).

The reasons why network performance is increased near

the edge of chaos are, however, not yet fully understood.

Other approaches to improving network performance

have also been investigated. For example, in a previous

study, we have addressed performance issues of echo

state networks (ESNs), a particular reservoir computing

approach, and investigated methods to optimize for longer

short-term memory capacity or prediction of highly non-

linear mappings (Boedecker et al. 2009). A general method

for improving network performance is the use of permu-

tation matrices for reservoir connectivity. However, prob-

lem-specific methods such as unsupervised learning also

exist. Bell and Sejnowski (1995), for example, changed

connection weights to maximize information, whereas

intrinsic plasticity (IP) (Triesch 2005) aims to increase the

entropy of each output of the internal units by adapting

transfer functions. As we reported elsewhere (Boedecker

et al. 2009), IP for tanh neurons unfortunately improves

performance only slightly compared to a setup based on

random or permutation matrices (at least for a number of

tasks; see also further comments in the ‘‘Discussion’’).

The phenomenon of increased computational perfor-

mance in recurrent neural networks at the edge of chaos has

been addressed in the literature before. Bertschinger and

Natschläger (2004) examined networks of threshold units

operating on input streams and found computational per-

formance maximized at the phase transition. The ‘‘net-

work-mediated separation’’ criterion was proposed as a

measure to quantify computational capability, and it was

found to peak at the critical point. In Legenstein and Maass

(2007a), the authors proposed two new measures in the

context of liquid state machines (LSM) (Maass et al.

2002), another reservoir computing approach using neuron

models closer to the detailed biology. They suggested to

consider the kernel quality and the generalization ability of

a reservoir. Its computational capabilities, they argued, will

be characterized as a trade-off between the two, and they

showed that it is most efficient at the edge of chaos.

These quantitative studies helped to gain insight into the

increased computational performance at the critical point.

However, we argue that they measured the elements of

ongoing computation only indirectly and on a global scale

(network perspective).

In this study, we seek to directly measure the compu-

tational capabilities of the reservoir as it undergoes the

phase transition to chaotic dynamics. In particular, we will

measure the information storage at each neuron, and

information transfer between each neuron pair in the res-

ervoir. This contrasts with examining the entropy of each

unit alone, since these measures relate directly to the

computational tasks being performed. Furthermore, it

means that we can directly quantify whether the compu-

tational properties provided by the reservoir are maximized

at the edge of chaos, and we can do so on a more local

scale (node perspective). Finally, the general applicability

of these measures allows us to compare the computations

in different kinds of dynamical systems.

We begin by describing in ‘‘Echo state networks’’ the

reservoir computing approach used here (ESNs). We then

explain the parameter variation under which the reservoirs

of these networks undergo a transition from ordered to

chaotic dynamics in ‘‘Estimating the criticality of an input-

driven ESN’’. Subsequently, we describe the information-

theoretical framework used for analysis here in ‘‘Informa-

tion-theoretical measures’’, including the active informa-

tion storage (AIS) (Lizier et al. 2007, 2008a) and transfer

entropy (TE) (Schreiber 2000). We show in ‘‘Results’’ that

direct measurement of these computational operations

reveals that both information storage and transfer in the

reservoir are maximized near the edge of chaos. This is an

important result, since it provides quantitative evidence

that a critical reservoir is useful in reservoir computation

specifically because the computational capabilities of the

reservoir are maximized in that regime. Finally, we discuss

the significance of these results in ‘‘Discussion’’.

Echo state networks

ESNs provide a specific architecture and a training proce-

dure that aims to solve the problem of slow convergence

(Jaeger 2001a; Jaeger and Haas 2004) of earlier recurrent

neural network training algorithms. ESNs are normally

used with a discrete-time model, i.e., the network dynamics

are defined for discrete time-steps t, and they consist of

inputs, a recurrently connected hidden layer (also called

reservoir) and an output layer (see Fig. 1).

We denote the activations of units in the individual layers

at time t by ut, xt, and ot for the inputs, the hidden layer and

the output layer, respectively. We use win, W, wout as

matrices of the respective synaptic connection weights.

Using f(x) = tanh x as output nonlinearity for all hidden

layer units, the network dynamics are defined as:

xt ¼ tanhðWxt�1 þ winutÞ
ot ¼ woutxt

:

The main differences of ESN to traditional recurrent

network approaches are the setup of the connection weights
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and the training procedure. To construct an ESN, units in

the input layer and the hidden layer are connected

randomly. Connections between the hidden layer and the

output units are the only connections that are trained,

usually with a supervised, offline learning approach using

linear regression (see Jaeger (2001a) for details on the

learning procedure).

For the approach to work successfully, however, con-

nections in the reservoir cannot be completely random;

ESN reservoirs are typically designed to have the echo

state property. The definition of the echo state property has

been outlined in Jaeger (2001a) and is summarized in the

following section.

The echo state property

Consider a time-discrete recursive function:

xtþ1 ¼ Fðxt; utþ1Þ ð1Þ

that is defined at least on a compact sub-area of the vector-

space x 2 Rn; with n the number of internal units. The xt

are to be interpreted as internal states and ut is some

external input sequence, i.e. the stimulus.

Definition 1 Assume an infinite stimulus sequence �u1 ¼
u0; u1; . . .; and two random initial internal states of the

system x0 and y0. From both initial states x0 and y0 the

sequences �x1 ¼ x0; x1; . . . and �y1 ¼ y0; y1; . . . can be

derived from the update equation Eq. (1) for xt?1 and yt?1.

If, for all right-infinite input sequences uþ1 ¼ ut; utþ1; � � �
taken from some compact set U, for any (x0, y0) and all

real values �[ 0; there exists a dð�Þ for which xt � yt� �

for all t� dð�Þ (where � is the Euclidean norm), the system

Fð�Þ will have the echo state property relative to the set U.

In simple terms, the system has echo state property if

different initial states converge (for all inputs taken from

U).

Estimating the criticality of an input-driven ESN

To determine whether a dynamical system has ordered or

chaotic dynamics, it is common to look at the average

sensitivity to perturbations of its initial conditions (Derrida

and Pomeau 1986; Bertschinger and Natschläger 2004;

Büsing et al. 2010). The rationale behind this is that small

differences in the initial conditions of two otherwise equal

systems should eventually die out if the system is in the

ordered phase, or persist (and amplify) if it is in the chaotic

phase. A measure for the exponential divergence of two

trajectories of a dynamical system in state space with very

small initial separation is the Lyapunov (characteristic)

exponent (LE). Although, a whole spectrum of Lyapunov

exponents is defined, the rate of divergence is dominated

by the largest exponent. It is defined as:

k ¼ lim
k!1

1

k
ln

ck

c0

� �

with c0 being the initial distance between the perturbed and

the unperturbed trajectory, and ck being the distance at time

k. For sub-critical systems, k\ 0 and for chaotic systems

k[ 0. A phase transition thus occurs at k � 0 (called the

critical point, or edge of chaos).

Since, this is an asymptotic quantity, it has to be esti-

mated for most dynamical systems. We adopt here the

method described in Sprott (2003, Chap. 5.6). Two identical

networks are simulated for a period of 1,000 steps (longer

durations were tried but found not to make a significant

difference). After this initial period serving to run out

transient random initialization effects, proceed as follows.

1. Introduce a small perturbation into a unit n of one

network, but not the other. This separates the state of

the perturbed network x2 from the state of the

unperturbed network x1 by an amount c0.1

2. Advance the simulation one step and record the

resulting state difference for this kth step

ck ¼ kx1ðkÞ � x2ðkÞk. The norm k � k denotes the

Euclidean norm in our case, but can be chosen

differently.

win

wout

Recurrent Layer

W

adaptable weights

random weights

Input units Output units

Fig. 1 Architecture of an echo state network. In ESNs, usually only

the connections represented by the dashed lines are trained, all other

connections are setup randomly and remain fixed. The recurrent layer

is also called a reservoir, analogously to a liquid, which has fading

memory properties. As an example, consider throwing a rock into a

pond; the ripples caused by the rock will persist for a certain amount

of time and thus information about the event can be extracted from

the liquid as long as it has not returned to its single attractor state—

the flat surface

1 This initial separation has to be chosen carefully. It should be as

small as possible, but still large enough so that its influence will be

measurable with limited numerical precision on a computer. We

found 10-12 to be a robust value in our simulations, which is also

recommended by Sprott (2004) for the precision used in this study.
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3. Reset the state of the perturbed network x2 to x1ðkÞ þ
ðc0=ckÞðx2ðkÞ � x1ðkÞÞ: This renormalization step

keeps the two trajectories close to avoid numerical

overflows (see Fig. 2 for an illustration of these steps).

In Sprott (2003), ck is added to a running average and

steps 2 and 3 are performed repeatedly until the average

converges. Here, we repeat these simulation and renor-

malization steps for a total of 1,000 times (again, longer

durations were tested, but found not to change results

significantly), and then average the logarithm of the dis-

tances along the trajectory as kn ¼ hlnðck=c0Þik:
For each reservoir with N units that is tested, we cal-

culate N different kn values, choosing a different reservoir

unit n to be perturbed each time. These values are then

averaged to yield a final estimate of the Lyapunov expo-

nent k ¼ hknin:

Information-theoretical measures

A natural framework to describe distributed computation in

dynamical systems is found in information theory (Shannon

and Weaver 1949; Cover and Thomas 2006). It has proven

useful in the analysis and design of a variety of complex

systems (Klyubin et al. 2005; Lungarella and Sporns 2006;

Sporns and Lungarella 2006; Prokopenko et al. 2006; Ols-

son et al. 2006; Ay et al. 2008; Lizier et al. 2008b), as well

as in theoretical neuroscience (Strong et al. 1998; Tang

et al. 2008; Tang and Jackson 2008; Borst and Theunissen

1999). To introduce the measures, we use for information

storage and transfer in multivariate systems, we briefly

review important concepts of information theory.

The (Shannon) entropy is a fundamental measure that

estimates the average uncertainty in a sample x of sto-

chastic variable X. It is defined as

HX ¼ �
X

x

pðxÞ log2 pðxÞ

If a base two logarithm is used in this quantity as above,

entropy is measured in units of bits.

The joint entropy of two random variables X and Y is a

generalization to quantify the uncertainty of their joint

distribution: HX;Y ¼ �
P

x;y pðx; yÞ log2 pðx; yÞ: The condi-

tional entropy of X given Y is the average uncertainty that

remains about x when y is known: HX|Y = -
P

x,y

p(x, y) log2p(x|y). The mutual information between X and

Y measures the average reduction in uncertainty about

x that results from learning the value of y, or vice versa:

IX;Y = HX - HX|Y. The conditional mutual information

between X and Y given Z is the mutual information between

X and Y when Z is known: IX;Y|Z = HX|Z - HX|Y,Z.

These information-theoretic measures can be used to

describe the process by which each variable or node X in a

system updates or computes its next state. Such computa-

tions utilize information storage from the node itself, and

information transfer from other nodes.

The information storage of a node is the amount of

information in its past that is relevant to predicting its future.

We quantify this concept using the AIS to measure the stored

information that is currently in use in computing the next

state of the node (Lizier et al. 2007, 2008a). The AIS for a

node X is defined as the average mutual information between

its semi-infinite past x
ðkÞ
n ¼ xn; xn�1; . . .; xn�kþ1f g and its

next state xn?1:

AX ¼ lim
k!1

X
xnþ1;xðkÞ

pðxnþ1; x
ðkÞÞ log2

pðxðkÞn ; xnþ1Þ
pðxðkÞn Þpðxnþ1Þ

: ð2Þ

AX(k) represents an approximation with finite history length

k. From our computational perspective, a node can store

information regardless of whether it is causally connected

with itself; i.e., for ESNs, this means whether or not the

node has a self-link. This is because information storage

can be facilitated in a distributed fashion via one’s neigh-

bors, which amounts to the use of stigmergy [e.g., see

Klyubin et al. (2004)] to communicate with oneself (Lizier

et al. 2008a, b, c).

The information transfer between a source and a desti-

nation node is defined as the information provided by the

source about the destination’s next state that was not

contained in the past of the destination. The information

transfer is formulated in the TE, introduced by Schreiber

(2000) to address concerns that the mutual information (as

a de facto measure of information transfer) was a sym-

metric measure of statically shared information. The TE

from a source node Y to a destination node X is the mutual

information between the previous state of the source.2. yn

and the next state of the destination xn?1, conditioned on

Fig. 2 Numerical estimation of the largest Lyapunov exponent k.

Trajectories are kept close by resetting the distance to c0 after each

update step in order to avoid numerical overflows (illustration after

(Zhou et al. 2010)). See text for more details

2 The TE can be formulated using the l previous states of the source.

However, where only the previous state is a causal information

contributor (as for ESNs), it is sensible to set l = 1 to measure direct

transfer only at step. n
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the semi-infinite past of the destination xn
(k) (as k!1

(Lizier et al. 2008c)):

TY!X ¼ lim
k!1

X
un

pðunÞ log2

pðxnþ1jxðkÞn ; ynÞ
pðxnþ1jxðkÞn Þ

; ð3Þ

where un is the state transition tuple (xn?1, x(k), yn). Again,

TY!XðkÞ represents finite-k approximation.

Results

To investigate the relation between information transfer,

AIS, and criticality in ESNs, we used networks whose

reservoir weights were drawn from a normal distribution

with mean zero and variance r2. We changed this

parameter between simulations so that log r varied

between [-1.5, -0.5], increasing in steps of 0.1. A more

fine-grained resolution was used close to the edge of

chaos, between [-1.2, -0.9]. Here, we increased log r in

steps of 0.02. We recorded the estimated Lyapunov

exponent k as described in ‘‘Estimating the criticality of

an input-driven ESN’’, the information measures descri-

bed in the previous section, and a parameter for task

performance described below.

The AIS was measured for each reservoir unit, and the

TE between each reservoir unit pair. A history size of

k = 2 was used in the TE and AIS calculations, and kernel

estimation with a fixed radius of 0.2 was used to estimate

the required probabilities. We recorded 15,000 data points

for each time series after discarding 1,000 steps to get rid

of transients. The output weights were trained with 1,000

simulation samples using a one-shot pseudoinverse

regression. Input weights were drawn uniformly between

[-0.1, 0.1].

We used two common benchmark tasks to evaluate

network performance. The first task was used to assess the

memory capacity of the networks as defined in Jaeger

(2001b). For this task, ESNs with a single input, 150 res-

ervoir nodes, and 300 output nodes were used. The input to

the network was a uniformly random time series drawn

from the interval [-1; 1]. Each of the outputs was trained

on a delayed version of the input signal, i.e., output k was

trained on input(t - k), k ¼ 1. . .300: To evaluate the short-

term memory capacity, we computed the k-delay memory

capacity (MCk) defined as

MCk ¼
cov2ðut�k; otÞ
r2ðut�kÞr2ðotÞ

:

The actual short-term memory capacity of the network is

defined as MC ¼
P1

k¼1 MCk: However, since we can only

use a finite number of output nodes, we limited their

number to 300. This provided sufficiently large delays to

see a significant drop-off in performance for the tested

networks.

The second benchmark task we used was a systems

modeling task. We trained networks with a single input and

150 reservoir neurons to model a 30th order nonlinear

autoregressive moving average (NARMA) system. In this

task, the output y(t) of the system is calculated by com-

bining a window of past inputs x(t) (sampled from a uni-

form random distribution between [0.0, 0.5]) in a highly

nonlinear way:

yðt þ 1Þ ¼ 0:2yðtÞ þ 0:004yðtÞ
P29

i¼0 yðt � iÞ
þ1:5xðt � 29ÞxðtÞ þ 0:001:

The performance for this task was evaluated using the

normalized root mean squared error measure:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð~yðtÞ � yðtÞÞ2it
hðyðtÞ � hyðtÞitÞ

2it

s
;

where ~yðtÞ is the sampled output and y(t) is the desired

output.

The results of the experiments described above are

shown in Fig. 3 (left) for the MC task, and in Fig. 3 (right)

for the NARMA modeling task. For each value of log

r, the simulations were repeated 50 times (the clusters that

can be observed in the figures are the result of slightly

different LE values for each of these repetitions). The MC

performance in Fig. 3 (left) shows a lot of variance, but a

general increase can be seen as the LE approaches the

critical value zero. After peak performance is reached very

close this point, the performance drops rapidly. The per-

formance in the NARMA task does not show as much

variation. The NRMSE stays around 0.8 for LE values

from -0.9 to -0.4. As the LE approaches zero, the

NRMSE decreases from around 0.5 to its lowest value of

0.4125 at LE -0.081. Shortly after that, however, as the

LE approaches zero even more closely, the NRMSE

increases sharply and reaches values as high as 142 (LE -

0.011). After this peak, the NRMSE values stay at an

increased level of about 2.

To arrive at a single value for the TE and AIS per res-

ervoir, we took averages over all the nodes in the reservoir.

The TE plots in Fig. 4 and AIS plots in Fig. 5 show very

similar behavior for both tasks. Both TE and AIS can

hardly be measured for LE values below -0.2. Around the

critical point, however, there is a sharp increase in TE/AIS,

followed by a sharp decline between LE values 0 and about

0.05. Both quantities stay at a slightly elevated level

compared to the values in the stable regime after that,

decreasing only slowly.
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Discussion

The conjecture that computational performance of

dynamical systems is maximized at the edge of chaos can

be traced back at least to (Langton 1990), and a significant

number of works have addressed this issue [see Legenstein

and Maass (2007b) for a good review]. A number of

quantitative studies, including those mentioned in the

‘‘Introduction’’, have been presented and have helped to

elucidate the mechanisms underlying this maximization of

computational performance. In this study, we adopt a more

general framework and at the same time are able to mea-

sure the elements contributing to ongoing computation

more directly and in a more localized fashion.

By investigating the information dynamics, this

study provides new insights into the problem of relating

Fig. 3 Left Memory capacity versus estimated Lyapunov exponent. Right Normalized root mean squared error (NRMSE) versus estimated

Lyapunov exponent

Fig. 4 Left Average TE in the reservoir for the memory capacity task versus estimated Lyapunov exponent. Right Average TE in the reservoir

for the NARMA task versus estimated Lyapunov exponent

Fig. 5 Left Average AIS in the reservoir for the memory capacity task versus estimated Lyapunov exponent. Right Average AIS in the reservoir

for the NARMA task versus estimated Lyapunov exponent

210 Theory Biosci. (2012) 131:205–213
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computation in recurrent neural networks to elements of

Turing universal computation–information transfer and

information storage. Our motivation for this study was to

explore why tuning the ESN reservoir to the edge of chaos

here produces optimal network performance for many

tasks. Certainly, we confirmed previous results (Legenstein

and Maass 2007a; Büsing et al. 2010) which have shown

that performance peaks at the edge of chaos (for the MC

task in our case). We then showed that our information-

theoretic approach quantitatively suggests that this is due to

maximized computational properties (information storage

and transfer) near this state. This also indicates that

information transfer and information storage are potential

candidates to guide self-organized optimization for the

studied (and maybe other) systems (see, however, the

points below).

Our results for these information dynamics through the

phase transition in ESNs are similar to previous obser-

vations of these dynamics through the order-chaos phase

transition in Random Boolean Networks (RBNs) (Lizier

et al. 2008b). A distinction however is that in the RBNs

study, the information storage was observed to be maxi-

mized slightly on the ordered side of the critical point and

the information transfer was maximized slightly on the

chaotic side of the critical point. This is in contrast to our

results here, where both maximizations appear to coincide

with criticality. Both results, however, imply maximiza-

tion of computational properties near the critical state of

the given networks. The similarity of the results seems

natural on one hand (given similar descriptions of the

phase transitions in both systems), but on the other hand

these two types of networks are quite different. Here, we

used analog activations and connections, whereas RBNs

have discrete connections and binary states (supported by

Boolean logic). Also, our networks are input driven, and

RBNs [in Lizier et al. (2008b)] are not. Since, we know

that the transition from binary to analog networks can

change system dynamics to a very large degree (Büsing

et al. 2010), the similarity in results across these network

types is intriguing. The implications are quite interesting

also, since relevant natural systems in each case are

suggested to operate close to the edge of chaos (gene

regulatory networks for RBNs, and cortical networks

here).

We must place a number of caveats on these results

however. Certainly, the computational capability of the

network will be dependent on the input, and we will not

find universal behavior through the order-chaos phase

transition.

We also note that the network is always performing

some computation, and does not need to be at the critical

state to do so. While the critical state may maximize

computational capabilities, the given task may require very

little in terms of computation. For these reasons, it is

known that systems do not necessarily evolve the edge of

chaos to solve computational tasks (Mitchell et al. 1993).

Moreover, neural networks are applied to a large variety of

different tasks, and certainly not all of them will benefit

from networks close to criticality. Training a network for

fast input-induced switching between different attractors

(‘‘multiflop’’ task), for instance, is known to work best with

reservoirs whose spectral radius is small, i.e., those on the

very stable side of the phase transition (cf. Jaeger 2001a,

Sect. 4.2). Instead of a long memory, this tasks requires the

networks to react quickly to new input. We also see that the

networks in the NARMA task show best performance

slightly before the phase transition, while performance is

actually worst right at the measured edge of chaos. A

possible explanation for this might be that the memory in

the network actually gets too long. The networks in this

task need access to the last 30 inputs to compute a correct

output, but if information stays in the reservoir from inputs

older than 30 steps, it might interfere with the ongoing

computation. Figure 3 (left) for the memory capacity task

supports this to some extent, showing that memory

capacity reaches values in excess of 30 around the critical

point. Lazar et al. (2009) present evidence that RNNs with

reservoirs which are initialized close to the phase transition

point and subsequently shaped through a combination of

different plasticity mechanism (IP, synaptic scaling, and a

simple version of spike timing dependent plasticity) actu-

ally drive the network further away from the critical region

toward more stable dynamics. Nonetheless, they outper-

form networks with fixed random reservoirs close to that

region, at least for the task they tested (predicting the next

character in a sequence).

Further, we see that performance on the two tasks we

studied shown in Fig. 3 is still quite good while the net-

work remains in the ordered regime, even though storage

and transfer are not measured to be very high here. This

suggests that much of the storage and transfer we measure

in the reservoir is not related to the task —an interesting

point for further investigation. The effect of different res-

ervoir sizes on the computational capabilities may be

interesting to investigate: while the memory capacity

increases with the number of reservoir units, the prediction

of some time series will only require a finite amount of

memory. Adjusting the reservoir size to the point so that

the reservoir is exactly large enough for the given task and

data may produce networks where the computational

capabilities are only dedicated to the task at hand. Also,

information transfer between input and outputs of the res-

ervoir is corresponding to a quantification of computational

properties of the task (rather than computational capabili-

ties of the reservoir); taking this into account may com-

plete the picture.
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Using these insights to improve or guide the design of

the reservoir, beyond confirming that best performance

occurs near the edge of chaos, gives a number of oppor-

tunities for future study: Levina et al. (2007) present a

possible mechanism for self-organized criticality in bio-

logically realistic neuron models, and it would be inter-

esting to examine their results from the information

dynamics perspective presented in this article. First steps

toward using the information transfer to improve perfor-

mance of reservoirs have been taken in (Obst et al. 2010).

Here, information transfer of individual units is tuned

locally by adapting self-recurrence, dependent on the

learning goal of the system. In addition, the information

dynamics framework might be useful to gain insight into

how the different plasticity mechanisms drive networks

away from the edge of chaos in Lazar et al. (2009), but still

achieve superior performance.

We emphasize that our main finding is that information

storage and transfer are maximized near the critical state,

regardless of the resulting performance. Indeed, there is

certainly not a one-to-one correspondence between either

of the information dynamics and performance. We also

note the results of Lizier et al. (2010), showing that max-

imizing these functions in other systems does not neces-

sarily lead to complex behavior.

Therefore, our results represent a promising starting

point for an understanding of the individual computational

properties of ESN nodes. However, there is certainly much

work remaining in exploring how these properties can be

guided to best support network computation.
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