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Markov models from data by simple nonlinear time series predictors in delay embedding spaces
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We analyze prediction schemes for stochastic time series data. We propose that under certain conditions, a
scalar time series, obtained from a vector-valued Markov process can be modeled as a finite memory Markov
process in the observable. The transition rules of the process are easily computed using simple nonlinear time
series predictors originally proposed for deterministic chaotic signals. The optimal time lag entering the
embedding procedure is shown to be significantly smaller than the deterministic case. The concept is illustrated
for simulated data and for surface wind velocity data, for which the deterministic part of the dynamics is shown
to be nonlinear.
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[. INTRODUCTION some structure in phase space to achieve this, despite the
much reduced statistical robustness because of the locality.
Predictability of observed aperiodic data beyond their lin-This structure is usually interpreted to be deterministic.

ear correlations is usually interpreted as a signature of deter- In this paper, we show that locally constant predictors in
ministic structure. Based on the idea of reconstruction ofime delay embedding spaces are the natural way to extract a
phase spaces from scalar time series and on the hypothesisRticular nonlinear stochastic process, namely, a Markov
deterministic chaos, the tools of nonlinear time series analymodel of nontrivial ordem>1 from observed scalar data.
sis allow one to evidence, characterize, and exploit determiniVe introduce the prediction scheme, present its theoretical
ism underlying the dynamics of the observafi@ Unfortu-  justification, discuss its essential parameters, and discuss its
nately, deterministic chaos is only one possible origin ofPerformance for numerically generated data. Finally, em-
complex aperiodic time series, and intensive studies peloying it to experimental time series data from surface wind
formed in the last years yielded ample evidence to show thatelocities, we will show that locally constant predictors can
the overwhelming majority of all real world data sets doesbe used to extract the nonlinear deterministic dynamics in
not belong to this class. Typical phenomena of interest suchoundary layer turbulence.
as weather, climate, economy, biology or physiology either With the goal of modeling the stochastic systems, Pa-
involve too many degrees of freedom to be resolved fronParellaet al.[4] have successfully employed local predictors
scalar data, or the deterministic evolution of some macroin reconstructed phase spaces for long-term simulations. As
scopic degrees of freedom is driven by the noise produced bijie present paper does, Rp4], relies on the extraction of
other degrees of freedom. Therefore, often a nonlinear stdhe probability density function of the future value from data.
chastic approach seems to be more appropriate. Recently,A¢ We Wwill recall, in general modeling is different from pre-
has been shown that in certain situations nonlinear Langeviflicting, and we will discuss the differences in Sec. IIl.
equations and Fokker-Planck equations can be derived from
data[2]. It'seems, .howev'er, that this procedure is restricted; | ocALLY CONSTANT PREDICTORS AND MARKOV
to Langevin equations with rather few degrees of freedom. MODELS
Furthermore, one needs to record simultaneous measure-
ments of all relevant degrees of freedom of a system in order The meanwhile classical approach of nonlinear time se-
to derive the equations of motion. Since this is an unrealisti¢ies analysis is the assumption that unpredictability and ape-
starting point, we want to follow the spirit of embedding of riodicity in data has its origin in a deterministic, chaotic dy-
scalar data. In this paper, we analyze the nature of the infomamical system in some phase space. The scalar time series
mation stored in a scalar time series from a possibly multi-obtained by physical measurements is thénanlineay pro-

dimensional stochastic dynamical system, e.g., a multivariatction of the phase space vecta(s) onto the real numbers,
Langevin equation. We propose a simple prediction schemg —h[x(t=nA)], where A is the sampling interval. The

that can be interpreted as a Markov model for the observabl%'(])ncept of embeddins,6] affirms that in the time delay
In many data sets enhanced predictability was found by mbedding space of ve’ctoﬁg—(s S S )
—\°nsOn—75 - s On—(m-1)7.

using nonlinear models living in reconstructed phase spaces, o . .
In fact, Casdagl[3] was even using the different predictive m sufﬂc:ently. large, equa.t|ons of motion of the form
power of models ranging from local linedr.e., globally — Sn+1=9(Sy) exist. The functiorg can be reconstructed from
nonlineaj to global linear ones in order to determine thethe observed data under the assumption of its smoothness,
degree of nonlinearity and determinism in data. If aperiodi¢vhere the pioneering work of Farmer & SidorowiEh] in-

data are best predictable by global linear models such dgoduced locally _constant qnd locally linear approximations
autoregressive process@sR models, the best physical de- 0f . In the remainder of this paper, we shall use the former
Scription is indeed the one given by such a process. If, ”'ﬁnd modifications thereof. FirSt, a nEighborhOOd diameter
contrast, local linear models are superior, then there must beas to be fixed and neighborhoods, of s, by 4,
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f{§k: ||Sk—Snl|<€} are formed. The locally constant pre- P(Vis V0 ~P(YnsalVn) Y Vel (4)
dictor for the unobservesd, .  is then ) . o
i.e., we use again a locally constant approximation.

2 1 2 E)(yn+1|)7n) can be estimated from the observed values of
Sn+1=777 .2 Sk+1 ) . X - .
|Un| Seelly Yk+1, the “futures” of the elementy, elf,, which form a
. . : . _ sample according tp(yn.+1|yn).
the mean of the “futures” of the neighbors. This is the maxi- |4 the deterministic case with sufficiently largs, the

mum Iikelihood estimator ofs.nﬂe under_ the assumption of .44 sition probabilities ared shaped,p(yns1|Yn)= 8.1
Gaussian errors and a functigs) that is constant fots, , _g(gn)), and the estimate of Eq4) yields some narrow

he”Fe the name “Iocallly constant pred_ictor." It can be distribution, provided the neighborhodf] is not too large in

straightforwardly generalized to a locally linear predictor by gigmeter. For a truly random setting this distribution might

replacingg(s) =const byg(s)=a-s+b, an affine function.  pe pbroad andif the sampling intervalA is relatively large
The superiority of this locally constant or the locally lin- even multimodal. In this latter case, the way how the knowl-

ear fit over a global linear modghn autoregressive model of edae of a sample 7Y is evaluated depends on the
mth order ARm)] of the form g ple a(¥n+1[Yn) P

purpose.
m When prediction is the goal, a typical cost function to
X”H:;l AXn—(i-1)r+ Ens1 (2) be minimized is the mean squared prediction eresr

=3(Yni1—Yns1)2 The best predictor is then the mean

is usually interpreted as an indication for nonlinear determin¥Yn+1=JYn+1P(Yn+1lYn)d¥s: 1, i-€., exactly the locally con-
ism in the data, formalized, e.g., by the Casdagli fg§t  Stant predictor given by Ed1). Depending on the shape of
Here, the ARm) model is a linear stochastic model, driven p(Yn+1|Yn), the mean can be a value unlikely to be attained
by random inputst,, which produces noise-driven damped by y, 1, and an iteration of this prediction scheme can yield
harmonic oscillation$8]. a quite atypical sequence p§, drastically different from the

A scalar Markov process ofith order in discrete time is behavior of the true data. Modeling thus would require to
defined by the fact that for any sequence of successive timeghoose a value at random from the observed distribution.

t1,to, ... .ty with n>m all transition probabilities fulfill This method was called local random analogue prediction in
] Ref.[4]. In cases where the mean valuepﬂ/nHl)?n) is a
PYn+1stnralYnotniYn-1tn-1, - Y1ity) particularly bad representative of the full distribution, mod-

eling and prediction are hence two very distinct tasks. In
such cases, it makes sense also to discuss other cost func-
3 tions for predictions. If on the average the error should as
often be positive as negative, the median is the optimal pre-
ictor. If we want to penalize large errors to their extreme,
e cost function would be the maximum of all errors made.

:p(Yn+1atn+1|ynitn Yn-tstno1s oo - Yneme o tnome1)s

i.e., the transition probability depends on the lasevents
only. Since the values of these transition probabilities can b
arbitrary, such a Markov model is much more general than ] ) N N

the AR'm) model mentioned above. In this case, the optimal predictionys ., 1= 5 (Ymax— Ymin) »

The purpose of this paper is to show that the locally con-Whe[eymax/min are the largest/smallest valueszfor which
stant predictor, originally based on the assumption of deterp(z|y) is nonzero.
minism, is in fact a particular predictor based on a Markov Regardless of which cost function one uses and irrespec-
assumption. Its superiority with respect to a linear stochastitive of whether the process is assumed to be stochastic or
model can thus as well mean that the data are generated bydjaterministic, the width of the distributiop(yn+1|)7n) is a
Markovian, nonlinear stochastic model. Apart from the con-direct measure for the accuracy of the prediction: The more
ceptual difference, this has implications on the issue of modspread there is among tlyg, ;, the larger is the local insta-
eling versus prediction: for a Markov model with non- pjlity, and hence the larger might be the deviationygf. ;
o-shaped transition probabilities, modeling and predictionfrom the mean of this distribution. This is illustrated in Fig. 1
are largely different tasks. But for nonstandard cost functionsor a deterministic chaotic model with measurement noise
too, modified predictors can be useful. (where the spread is related to the position dependent expo-
First, we observe that the independent variables enteringential divergence of nearby trajectories, sometimes called
the transition probabilities of E¢3) are exactly the elements |ocal Lyapunov exponentsand for data from a nonlinear
of a delay vectos,, if we identify the times with the corre- Langevin equation. We hence propose to use the variance of
sponding integer multiples of the sampling interntakkA.  the transition probability distribution as a criterion for the
The timest, will, therefore, be suppressed in the following, reliability of the actual prediction.
and the transition probabilities will be denoted by

P(Yn+1|Yn). In order to extract these probabilities from data,
we have agairfas in the deterministic case abgwe make

the assumption that their dependenc&da smooth. Then it If the hypothesis about a scalar time series is that it rep-
is reasonable to use the following approximation: resents one observable from a vector-valued deterministic

IIl. WHEN IS A SCALAR OBSERVATION FROM A
MULTIVARIATE LANGEVIN EQUATION MARKOVIAN?
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0.6

knowledge of only a few components is sufficient to fix the
future probability distribution completely, not even for one
of theses components.

However, we will demonstrate here that in certain situa-
tions the dynamics in a delay embedding space of a single
observable is Markovian, and in many more situations it is
approximately Markovian in the sense that the memory, al-
beit formally infinite, can be assumed to be finite in the sense
02 ¢ 1 that the errors thus introduced are smaller than the modeling
errors stemming from the fact that all information about the
01 1 process is extracted by statistical means from a finite amount
of data.

: \ \ ‘ Whether or not a scalar measurement from a multidimen-
0 O aiance piy...) Nariance data ! sional Langevin equation is Markovian depends on the sys-
s tem as well as on the measurement function. Let us first

FIG. 1. The mean prediction erroN{(Yn,1—Yn:1)?), as a consider a simple example. The Duffing system

function of the standard deviation of the distributionp/,,. 1|ys).-

Continuous line, chaotic time series of the Lorenz sysftEm (9)] X

with additive measurement noise; dashed line, noise-driven Duffing a =v(t),
oscillator[Eq. (6)].

0.5

Lorenz

prediction error

dv
g 3
system, the above-mentioned embedding theorems allow one dt =av(t)=x*(t) +x+bI'(t) ©)

to reconstruct a vector-valued space, the time delay embed-
ding space, in which determinism is restored. The corredescribes the stochastic motion of a damped particle in a
sponding problem for Markov processes is the following:double well potential, where(t) is the velocity and(t) the
Given is a vector-valued, multidimensional Markov processposition of the particle. This equation defines a Markov pro-
and a single observable. Does the time series of values of thisess of order 2 inx,v). The particle keeps moving through
observable represent a scalar Markov process of some finitee stochastic kick$'(t). The change in the velocity of the
order m in time? Although this question is typically not particle is determined by the stochastic inputs as well as by
posed, the general answer is well known to be negdB¥e  the position of the particle. As argued by van Kamp@fthe
Nonetheless, since in time series analysis one usually nevepsition of the particle depends on the velocity at all previ-
has observations in the full phase space, this is a relevaglus times. Therefore, the velocity possesses an infinite
issue that will be discussed in some detail in this section. memory. One has to know the velocity at all former times in
To make the relation to the deterministic setting as closerder to determine the probability distribution for its future
as possible, we assume as a generator of the Markovian dyalue. In the deterministic cagevithout stochastic forcing
namics a Langevin equation of the type the reconstruction relies on the fact that the second equation
of Eq. (6) can be solved fok if a sufficient number of de-
rivatives ofy is given. This inversion property breaks down
if the stochastic force is added and one, therefore, has to

hich is th lizati f i time d . Iresolvex from the first equation in Eq6).
which IS the generalization of a continuous time dynamical |, the |imit of &t—0 the x coordinate fulfills a second

system, with an additional stochastic for@Xx(t))I'(t),  order Markov property, i.e., knowing the position at times
where ['(t) e R' with (KT (t"))=6kw6(t—t') as a t—dtandtis sufficient to estimate the probability distribution
I-dimensional Gaussian white noise and;‘-(f) a oOfits nextvalue. This is due to the fact that the knowledge of
(nx1)-dimensional matrix function. For a-dimensional X(t—4t) andx(t) gives an estimate for the velocity(t),
state space with state vector&t) =(x,(t), . . . x,(1)), Eq. and knowing the position at(t—24t) does not supply any

(5) defines a Markov process of orderFor the determinis- additional information. In all cases where we speak about the
- Markov property for a discretely sampled observable of a

;  StaleSime continuous system we implicitly refer to the lindit-0.

that one can reconstruct the dynamics of the _rnuIt|d|m_en- Applying the same arguments one can, for example, also
sional process by using subsequent values of just a S'ngt?nderstand the effect of dynamical noise coupled into the
scalar observable[ x(t) ]. Does a similar procedure exist for Rgssler and the Lorenz systems. If tevariable of these
the multidimensional process generated by the Langevikystems is driven by noise one finds that theoordinate is
equation? Can the information contained in thea Markov process of order 3 whereas theoordinate pos-
n-dimensional state vectot(t) somehow be reconstructed sesses an infinite memory.

by measuring onlys components wittrs<n, at subsequent As a first example to investigate numerically, let us con-
times, employing a finite memory of those? In general thesider the noise-driven van der Pol oscillator that has a stable
answer to this question is no. One cannot expect that thémit cycle as asymptotic solution

x=F(X(1))+ GO (1), (5)
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x=y(t)+al(t),

y=[r—x(t)2]y(t) —x(t)+bI'(t). (7)

The system was modeled by driving either the first or the
second equation by the white noise inputs with unit variance
(properly rescaled by the square root of the step width of the
Euler integrator in the numerical simulatjorso the param-
eters are either a;b)=(0.5,0) or @,b)=(0,0.5) andr
=3.0. In the case where the second equation is driven by the
noise @=0), thex coordinate is a Markov process of second
order in time. Deriving the first equation with respect to

time, substitutingy by the second equation, and replacing
by the use of the first one leaves us with a stochastic differ-
ential equation of second order in time for the variakle
which generates the Markov process.

Employing the same arguments as before, this gives rise
to three different situations that we want to analyze numeri-
cally in the following: (a) The noise is added to an unob-
served variable but the Markov property is valid for the ob-
served coordinate(b) The noise is added to the observed
variable and hence destroys the Markov prope(ty. The
noise is added to an unobserved variable and the observed
variable is not Markovian.

Let us first have a look at the reconstructed phase spaces
for these three situations: For the case where the noise is
coupled to the second equation, we show in Fi@) 2he
phase portrait using thevariable for the embedding. In Fig.
2(b) we show the phase portrait in the case where the noise is
coupled to the first equation, again using thgariable for
the embedding. In Fig.(2) the noise is again added to tke
variable but this timey is used for the reconstruction. In the
first case we see only small deviations from the limit cycle.
The second portrait appears like a random walk added to the
limit cycle, whereas in the third plot the original limit cycle
seems to have additional nontrivial structure.

These three cases will now be analyzed by means of the
above introduced locally constant predictors. We will per-
form predictions as outlined above by varying the embed-
ding dimension and the time delay. Usually, while increasing
the embedding dimension one has to use larger neighborhood . ‘ ‘
diameterse in order to collect a certain number of neighbors 10 -5 0 5 10
in U, . This might penalize higher-dimensional embedding Yo
In order to rule out such an effect we require the same fixed FG. 2. Two-dimensional projection of the phase portrait of the
number of neighbors within a fixed diameter of the neighboran der Pol system for different configurations of the noise driving
hood for each embedding dimensionand each time delay and different variables used for the embedding.

d, and vary the length of the time series within which the

neighbors are sought fawe run through the time series

backward in time until a certain number of neighbors havebedding window, i.e., the time intervain— 1) spanned by
been founal a delay vector with optimalk, is independent om for m

The result of the predictions is shown in Fig$a)3-3(c), =2, hence confirming that a second-order model is suffi-
where the prediction erronormalized by the standard de- cient. In contrast we find for cagb) that the prediction error
viation of the data versus the time delay is shown for  decreases for increasing embedding dimensions—each di-
different embedding dimensions. We identify different mension adds information when predicting the future prob-
memories of the time series depending on the way the noisgbility distribution. The improvement, however, amounts
is coupled into the system. For the first caag we find that  only to a small percentage of the total error. If we drive xthe
the minimum of the prediction error does not depend on theoordinate by the noise inputs and recordymordinate(c)
embedding dimension fon=2. In addition, the optimal em- they coordinate seems no longer to be Markovian. We find

x(t-15)

x(t-15)
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0.0045

relative prediction error

0.004

0.07

0.065
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relative prediction error

0.055
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0.05

0.045

0.04 -

relative prediction error

0.035
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delayt

FIG. 3. Relative prediction errorormalized by standard de-
viation of the dataversus time delay for different embedding di-
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—Hg(e), estimated by the correlation entropy

2
(N=n)(N+1—n)

Sl P
n,=|=—In
2

Hn(e)z—InC(

€ s s
x> (§—|si—sj|) . )

i<j

Here the ®(-) is the Heaviside step function§i are
n-dimensional delay vectors ardl is the length of the data
sequence. It is well known that the conditional entropies
h,(e) behave ash,(e)=c,—Ine for a stochastic process,
where the constants, are monotonically decreasing with

If the process is a Markov process of order c,=c,, for

all n>m. Hence, in a logarithmic representation of the con-
ditional entropiedh, ... ,h, for a Markov process of order
m one findsm parallel but distinct lines. All curves fon
>m collapse onto the graph &, since there are no memo-
ries present of ordem+1 and higher, which could reduce
the entropy further.

The conditional entropief, ... hs are shown for the
process in Eq(7), for the cases where the noise is added to
y [Fig. 4@)] or to x [Figs. 4b) and 4c)]. In the case where
the process is Markovian of order (Roise added tg, X
recordedl we find h,, hs, h,, and hs collapsing onto a
single line for the range o€ values corresponding to the
stochastic regime. In the case where the noise is added to the
observedx variable directly we find that on small-length
scales mainly the random motion around the limit cycle be-
comes visible and higher-order memories are difficult to de-
tect using conditional entropies. Only in the last case we see
that the noise introduces longer memories and creates non-
trivial higher-dimensional structures in phase space.

In summary, only in exceptional cases, an observed scalar
time series can be assumed to be Markovian. However, from
the practical point of view, it seems that oft&uch as hene
the memory, albeit formally infinite, decays fast and hence
the process can be approximated by a finite-order Markovian
process. If the error introduced by this approximation is
smaller than other modeling errors caused by the finiteness
of the data set, there is practically no difference between the
Markov approximation and a hypothetical infinite memory
model.

IV. OPTIMAL EMBEDDING PARAMETERS

mensions. Noise configurations and coordinates used for embedding |n g deterministic system a strict lower bound for the di-

equal the corresponding values in Fig. 2.

mension ism=D, whereD is the number of active degrees
of freedom[7]. The optimal value for the dimension can,
however, be larger, since the sufficient embedding require-

higher-order memories in this variable. The improvement usment to obtain an unfolded attractorris>2D. An estimate
ing higher-dimensional embedding is even significantly bet-of a proper value ofm can be obtained using the method of

ter than for the actually noise-driven varialjts.

false neighbord11]. Using embedding dimensions higher

To study the difference between these three cases hhan that necessary to unfold the attractor adds redundancy in
means of a well established approach for stochastic dynamthe neighbor search and worsens the performance of the pre-
cal systems we will now use the concept of coarse grainedictions due to the finite precision of the data and the limited

dynamical entropiegl0]. More precisely, we will exploit the
properties of the conditional entropy,(e)=H,1(€)

length of the time series.
The time lagr is not a subject of the embedding theo-
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0.007

i r=3.0
\ a=00

0006 - !

\ b=80(025) "

0.005 | i

relative prediction error in x

0.004 \_ﬁ,,/”/6=1.0(*0.5)

0.003 . .
0 5 10 15
time delay ©

; . FIG. 5. Relative prediction error versus delay for different noise
N () levels for the van der Pol systel+=0.5, 1.0, 3.0. The two curves

for b=1.0 and 3.0 are rescaled by a factor of 1/2 and 1/4, respec-
R tively.

. both cases. These phase space considerations represent geo-
1 S metrical arguments to find a good delay, which have been
N formalized by statistics such d#l factor [12] or displace-

. . ment from diagona[13]. Since these are just recipes, it is

S often better to use the autocorrelation function the time

“ delayed mutual informatiofil4] to account for all nonlinear
correlation$. The simplest reasonable estimate of an optimal
ol - - 3 delay is the first zero of the autocorrelation function of the
10 10 10 10 signal[1]. The striking point is that these estimates generally

& yield too larger values for stochastic dynamical systems, as
we will discuss here.

Now let us examine how the model parameters should be
chosen in the case that the time series has been generated by
a Langevin process. As pointed out in the preceding section
one has to consider in general two different cases. One pos-
sibility is that the time series represents a Markov process of
the order of the original multidimensional process given by
the Langevin equation. In this case the optimal embedding
dimension is the order of the process and every further in-
formation, i.e., higher-dimensional embedding, only adds re-
dundancy. The second possibility is that the time series pos-
sesses an infinite memory due to the stochastic driving force
in the Langevin equation. In this case every additional di-
mension adds information and increases the predictability.

The way in which the unrecorded variables are recovered

FIG. 4. Correlation entropids, , .. ., hs for the attractors of the PY the delay embedding tells us about the optimal delay.
van der Pol system with delay=35. Noise configurations and Formally, we reproduce the hidden variables by introducing
coordinates used for embedding equal the corresponding values ffigher derivatives of the measured variable. Since these de-
Fig. 2. The dashed line shows the functibf) = —In(e)—3. rivatives are practically replaced by the difference between

two values of the time series in the limit of vanishing time
rems. In the limit of infinite precision of the data and infi- difference between these values, the delay should be in prin-
nitely long time series, all values af are equivalent. In a ciple as small as possible and hence the sampling interval of
practical situation, however, a good choice of the delay ighe time series. We will see from our examples that this is the
crucial. If 7 is too large, successive elements of the embedease for high noise levels. For very small noise levels we
ding vector are almost independent and the vectors fill a&vidently find that the optimal delay assumes the value found
large cloud in the reconstructed phase spacer I too  for deterministic case, e.g., the first zero of the autocorrela-
small, successive elements of the embedding vector aréon function. For intermediate noise levels the optimal delay
strongly correlated and all vectors are clustered around thigterpolates monotonically in between these two limits. This
diagonal. Meaningful neighborhoods are difficult to obtain inis illustrated in Fig. 5 for the van der Pol systdfq. (7)],

10™ 10~ 10° 107
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-20 -10 0

10

20

x(n+t)

x(n+1)
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e=0.0215
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x(n)
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FIG. 6. Two-dimensional projection of the phase portrait of the Lorenz system for different values of thereeayl0, and 30,
vanishing noise level(a)—(c)] and noise levep=10.0[(d)—(f)]. The relative prediction erro¢ is also given in the graphs.

when the second equation is driven by the noise arisl A time series of lengtiN=100 000 was generated by in-

measured.

tegrating these equations and samplingxtemponent ev-

As a second example we want to analyze the noise-drivegry 0.1 units of time. In Figs. (@)—6(c) we show three dif-
Lorenz system. The equations of motion are

Xx=6(y—x),
y=28Xx—y—Xz,

z=xy—(13/6)z+ BT.

ferent values of the delay and for vanishing noise level a
two-dimensional projection of the phase portrait of this sys-
tem. For a small delay of=3 the phase portrait is centered

around the diagonal since consecutive values of the time

©) series are very similar. For an intermediate delayrefl0

the attractor seems well unfolded. Larger delay times such as
7=30 lead to complicated intersecting graphs. For vanishing
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noise level the apparently simplest phase porfifig. 6(b)] 15
leads to the minimal relative prediction errey where the

absolute error is normalized by the variance of the data

However, the optimal value for the delay decreases as the

noise level is increased. In Figs(ds—6(f) we show phase 0.5
portraits of the Lorenz system with the same values of the
delay as in Figs. @ —6(c) but for a noise level o8=10.0.

Still the phase plot withr=10 shows the best unfolded at-

tractor by visual inspection. But this time the minimal pre- -0.5 [\
diction error is achieved with a delay o= 3. Therefore, for
stochastic dynamical systems the visual inspection of the
phase portrait as well as the first zero of the autocorrelation

variable x(t)

function might not be a good condition for choosing an op- 15, 1000 2000 3000 4000 5000
timal value of the delay. We hence recommend an explicit time t

optimization of the prediction errors with respect to the time ) ) ) ,

lag . FIG. 7. Variablex versus timet for the Duffing oscillator.

terministic part of the Markovian dynamics, all predictions
V. NONLINEAR FLUCTUATIONS IN STOCHASTIC should be correct on average. In the same sense, the pre-
SYSTEMS dicted increment, i.e., the difference between the predicted

The issue of whether or not a stochastic process is lineaf@lue Sn+7 and the actual value,, should be correc'E on
has strong implications on the magnitude of fluctuations as average. This means that if one predicts an incremest
function of time. Nonlinear fluctuations in Markovian pro- =s,,t—s, in a number ofk situations the average of the
cesses can be identified using the suggested prediction algaetually measured incremenisy in these situations should
rithm. The idea is that if we use a linear process to predict aRonverge towarda s, for largek.

intrinsically nonlinear process, the predicted fluctuations are ysjng this statistics we observe a significant difference
too small on an average. We hence analyze the probabilitjetween the two prediction schemes as is shown in Fig. 9.
density function PDF) of the increments&stsnmf$e'— S, Whereas the locally constant predictor gives the accurate in-

predicted by the AR model and by the locally constantcrements on average, the linear model systematically under-

model, Wheregnmf_?_el is the value of the Signa| a timeahead estimate; the fluctuat.io.ns.. The AR model is unable to flt .
as predicted by either of the two models. Although it is pos_the nonlinear deterministic part of the process. Thus itis
sible that the difference of the average prediction error of ashown that a locally constant model captures the nonlinear
AR model and a nonlinear model is small, the PDF’s of thedeterministic dynamics of this second-order Markovian pro-
predicted increments can differ clearly. This is due to the facE€ss and the suggested statistics can be used to detect non-
that long tails of the PDF of a nonlinear stochastic proces§nearity in a time series, whereas in this case the average
have their origin in stochastic fluctuations as well as in nonPrediction errors of the two models are very similar.
linear correlations. The latter can be modeled by a nonlinear The scheme developed above will now be applied to sur-
scheme but not by a linear algorithm. face_wmd velocities of the atr_nqsphenc bounda_lry Iayer._As
For the noise-driven Duffing oscillatdEq. (6)] with a  Studiedin Ref[15] for the prediction of surface wind veloci-
=—0.5 andb=0.5 the motion is essentially created by the
stochastic term—uwithout noise the particle would come to .
rest—and the deterministic part of the dynamics is nonlinear. 10" ¢
A time series of this process is shown in Fig. 7 using a
sampling rate obt=0.1. In Fig. 8 we show the PDF’s of the

A A s s ae LY
linearly and nonlinearly predicted incremenis,=sM°de! 10" | gg‘,,eg?'gp:gm g

—S,. The locally constant predictor was run in a two- pdf full model * :
dimensional embedding space with optimal delay of <
=106t, and the linear predictions were performed by using = A\
an AR(2) model with equal time lag. The prediction horizon 107 ¢ P
was T=206t. .
We also show the PDF of the increments of the actual I
time series and of the increments modeled by knowing the 1072 L - - s
exact deterministic part of the equations of moti¢6). - -2 -1 0 1 2 3
Whereas the AR model is unable to capture the large incre- increment
ments of the signal, the locally constant scheme gives a good F|G. 8. PDF of the increments of thevariable of system 6.
approximation to the PDF produced by the deterministic pariiso shown are the increments predicted by the lifd&) and by
of the equations of motion. the nonlinear model&erg as well as the increments predicted by
If the locally constant model was able to capture the deknowing the exact deterministic part of the equations of motion.
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107 : : '
0 05 1 15 2
velocity increment (m/s)
0 0 0I5 1I 1I5 2
’ increment (zero) ' FIG. 11. Positive branch of the PDF of the increments of the

time series of the surface wind. Also shown are the increments
FIG. 9. Actually measured incremefs; and AR-predicted in-  predicted by the linedrAR(10)] and by the nonlinear modéterg
crementAS2R versus the increments2°™ predicted by the locally ~ With embedding dimensiom=10.
constant scheme.

The signal appears highly disorganized and presents struc-
ties, no reduction of the average prediction error can bdures on all time scales. . _
achieved using a nonlinear scheme instead of a linear OUr analysis again relies on the prediction of the wind
scheme. Improvement of the nonlinear model is possible\,’_eloc't'e_’S L|JSIngb gd_locally cons;cjant pred|ct(ér | In_ten-
however, in situations where a large increase of the Winéj:mgns?na lem ? '_?g saﬁce and_ i.n(ul? ”_‘0; (]?g]o'
speed is predicted by the nonlinear algorithm. This behaviog;%mlgn ITn?e?\/glalc; kj/\r/](le%h\,(\)li/v ir?gire 1"1 |tcr)]r(1a rioﬁ-?]anc:j branch
can be understood in a more general fashion using the frame-f hp 9 fth : dicted i 9. g” h f
work of Markov models. of t e PDF of the pre |(_:te mc_rements_ as we as_t e PDF o

We use data recorded on the Lammefjord on the islanéhe increments _of the time series. As in the Dufflng system,
Seeland in Denmark. The terrain around the measurement . con >¢€ @ difference between the PDFs of the increments
station is very flat and no major obstacles interfere with th redicted .by the linear and. by the non!mear models. The
fluid flow. One component of the wind velocity was recorded atter predicts larger quctuatlo.ns of the_S|gnaI. Next we .W'"
with a sampling rate of 8 Hz using an ultrasonic anemomete?how that these large fluctuations predicted by the nonlinear

) ) : scheme give on an average a better representation of the real
located at an altitude of 10 m during a period of 24 h. A.

tvoical time series of the wind velocity is shown in Fid. 10 increments than the linear model in these situations.
yp y 9. 10 Figure 12 shows the measured increments and the incre-

ments predicted by the AR model and the nonlinear model

10 T T
15 T
\
/
L /
/ /
AN /l
= zero—. ddta
< = /
£ g 1 #
Z e
3 £ -
4 g /
- AR
2 05 ¢ . 1
- [
7
7
Vs
7
2 L I 0 0 0'5 ‘i 5
0 10000 20000 30000 - .
time index increment (zero)

FIG. 10. Time series of the total wind velocity during a period ~ FIG. 12. Actually measured incrementsy and AR-predicted
of 1 h recorded on the Lammefjord in Denmark with a samplingincrementAs’TAR versus the increments3®™® predicted by the lo-
rate of 8 Hz. cally constant scheme with embedding dimensiona 10.
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10 0 0.5 1 15 FIG. 15. The average forecast errors of local linear models as a

function of the number of neighbors used for the fits,{fa} (con-
tinuous and{s,} (dashed of the AR(2) procesdsee text

FIG. 13. Positive branch of the PDF of the increments of the
signal and that given by the predictors as in Fig. 11, but for embed-
ding dimensions om=5 andm=15.

velocity increment (m/s)

VI. NONLINEAR MEASUREMENT FUNCTION

An important and typical situation is that the output of a
versus the increment predicted by the nonlinear scheme. Wehear system is measured by a nonlinear function. This in-
observe a similar behavior as for the Duffing oscillator,qyces nonlinear correlations in the data. Especially if the
whereas the locally constant model gives a satisfying repremeasurement function is unknown or not invertible, one has
sentation of the increments that the AR model significantlyto resort to a nonlinear algorithm to model the time series. To
underestimates on an average. This shows that the data @émpare the predicting power of a nonlinear model and a
Surface W|nd VeIOCitieS are essentia”y nonlinear and a nonﬁnear mode' on data transformed by a non“near function we
linear model is able to fit nonlinear fluctuations. use a method Suggested by Casdﬁgh Using th|s Statistics

We have chosen the embedding dimensior10 be-  gne can tune between a globally linear model and a local
cause th|S Value iS Iarge enough to Obtain nontriVial prediCmode| by Computing the One_step prediction error for the
tions and sufficiently low in order to keep the computationallinear approximation as a function of the neighborhood size
effort manageable. Since there is agriori optimal value  diam(/). For small neighborhood size diam, one has a local

for min higher-dimensional systems as for the surface windmodel but for neighborhoods in the limit of the attractor size
we consider the lash measurements to contain the dominantthe predictions are given by the AR model. Let us investigate

information on the transition probabilities and the earlierthis statistics for an AR) process, namelyx, ;= ajX,
events to be corrections thereof. We want to demonstratg 5,x. .+, with the measurement functions,

now that the result presented above is valid for a range of. sgn,,) v[x,] anda;=1.985 anda,= —0.995. In Fig. 15
different values ofm. This is shown in Figs. 13 and 14 for o "average forecast errors of the local linear models as a
the valuesn=5 andm=15. The qualitative behavior is the fnction of the number of neighbors used for fitting the mod-
same as in Figs. 11 and 12. els are shown for both the sequenéss and{x,!.

1.5 :
0.5 . .
_ 04 .
= 1!l i S linear model
B data iy
£ c
= S 03t ’ .
5 8 g
aEJ A 3
€ 05+ i ©02r /" . T
8 [ e
[ R
0.1 | SO e T ]
0 . ‘ relative improvement of the
0 0.5 1 1.5 A nonlinear model verus persistence

increment (zero) iy 1 2 3

. . prediction horizon (s)
FIG. 14. Actually measured increments; and AR-predicted
incrementAsyR versus the incrememis2°™ predicted by the lo-
cally constant scheme for embedding dimensionsnef5 andm

=165.

FIG. 16. Relative prediction error of the linear modAR) and
of the nonlinear moddkzerg for the power output of a wind turbine
versus prediction horizon.
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FIG. 17. PDF’s of the increments of the data, of the linear model _ F'CG- 18- Increments predicted by the nonlinear mogieis/
(AR), and of the nonlinear modétero for the power output for a minus standard deviatipand by the linear model versus the incre-
prediction horizon of &. ments of the data.

_ ) model is unable to capture the large fluctuations, the nonlin-
For the direct outpu{x,} of the linear process the AR g5 scheme almost resembles the data. Finally, we want to
model gives slightly better predictions than the local modely o that the large fluctuations predicted by the nonlinear
due to its higher statistical robustness. However, if the outpUt cheme really occur correlated with the increments of the
of the linear system is nonlinearly transformed a nonlineag, 41 data. In Fig. 18 the average increment predicted by
model can be significantly better. _ either of the modelgplus/minus the standard deviation for
As an example of practical importance we consider NOWne nonlinear modglis shown versus the actual increments
the power output of a wind turbine, which behaves as they the data. An optimal predictor would correspond to the
third power of the wind speed. Consequently, if one considyiagonal in this figure. The graphs show an asymmetry that
ers the longitudinal component of the velocity of the atmo-is que to the fact that the power output has an upper cutoff.
spherev, as the independent variable of a dynamical systemrperefore, a decrease of the power data is often impossible

the power outpuP would be a tre'msfor3mation of that vari- 4 predict, since it is not preceded by a typical pattern of the
able through measurement functiBs=v; . The actual mea- {jme series.

surement function is more complicated, however, due to cut-
offs at a minimal and a maximal velocity and because of
additional technical details of a wind turbine. Linear corre-
lations in the velocity signal are transformed into nonlinear
ones by the action of the nonlinear measurement function. We have discussed the application of a locally constant
This on an average leads to improved predictability of thepredictor in a reconstructed phase space to stochastic data. In
power signal if one uses a nonlinear model despite the faatontrast to previous work where enhanced predictability of
that the mean prediction error of the velocity signal itselftime series data by such a scheme was interpreted as a sig-
does not decrease by the use of a nonlinear scheme. Fomature of determinism, we show here that this modeling
time series of the power output of a wind turbine, the relativescheme represents an empirical Markov model for the data.
forecast errorss o4/ o Versus the prediction horizon are Despite the fact that scalar time series typically does not
shown in Fig. 16 for the linear as well as for the nonlinearrepresent a Markov process, the approximation is rather good
models. Also shown is the prediction error using the lastin many applications. We have compared the practical issues
value as prediction for the next orfpersistence The im-  of modeling stochastic data to the modeling of deterministic
provement using the nonlinear scheme amounts on an avedata, where, e.g., one surprising result is the need of much
age upto 10% of the prediction error of the linear model.shorter values of the time lagin the embedding procedure.
More important than this averaged improvement is this beThe width of the transition probability allows one to estimate
havior of the nonlinear model when large fluctuations occutthe precision of the prediction, and the statistics of the fluc-
in the time series. For this we show the PDF of the incretuations gives an estimate of the degree of nonlinearity in the
ments of the data, of the nonlinearly predicted incrementsgata. We have applied this scheme with considerable success
and the PDF of the increments predicted by the AR model irto field measurements with low predictability, namely, sur-
Fig. 17 for a prediction horizon of & Whereas the AR face wind velocities.

VII. CONCLUDING REMARKS
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