
1 Information measures

1.1 Introduction to information theory

In order to get an insight into transfer entropy and active information storage
we have to define some key information theoretic concepts. We will follow
the definitions according to MacKay [1]. At first we define the Shannon
information content and entropy of a discrete random variable X.

Definition 1 Shannon information content of an outcome x is defined to be

h(x) = log2

1

P (x)
. (1)

The units are called bits.

Definition 2 The entropy of an ensemble X is defined to be the average
Shannon information content of an outcome:

H(X) =
∑

x∈AX

P (x) log
1

P (x)
for P (x) 6= 0 (2)

= 0 for P (x) = 0

since limθ→0+ θ log 1
θ

= 0.

Next we need to define conditional entropy.

Definition 3 The conditional entropy of X given y = bk is the entropy of
the probability distribution P (x | y = bk).

H(X | y = bk) =
∑

x∈AX

P (x | y = bk) log
1

P (x | y = bk)
(3)

Definition 4 The conditional entropy of X given Y is average, over y, of
the conditional entropy of X given y.

H(X | Y ) =
∑

y∈Ay

P (y)

[
∑

x∈AX

P (x | y) log
1

P (x | y)

]

(4)

=
∑

x∈AX ,y∈AY

P (x, y) log
1

P (x | y)
.
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The interpretation of conditional transfer entropy is that it measures the
average uncertainty that remains about X when Y is known.

Now we can define mutual information and conditional mutual informa-
tion.

Definition 5 The mutual information between X and Y is

I(X; Y ) = H(X) − H(X | Y ). (5)

Mutual information measures the reduction of uncertainty about X that re-
sults from learning the value of y.

Definition 6 The conditional mutual information between X and Y given
z = ck is the mutual information between the random variables X and Y in
the joint ensemble P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (6)

Definition 7 The conditional mutual information between X and Y given
z = ck is the mutual information between the random variables X and Y in
the joint ensemble P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (7)

Definition 8 The conditional mutual information between X and Y given Z
is the average over z of the conditional mutual information from Definition 7.

I(X; Y | Z) = H(X | Z) − H(X | Y, Z). (8)

Entropy and all other measures based on entropy we have just introduced
are defined for a discrete set of probabilities. Shannon in [2] analogously
defined the entropy of a continuous distribution with the density distribution
function p(x) as

H(X) =

∫ ∞

−∞
p(x) log

1

p(x)
dx. (9)

This quantity is sometimes called differential entropy although this is not a
measure of uncertainty of the random variable X as Shannon intended it to
be.
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Similarly, from the identity

I(X; Y ) =
∑

x∈AX ,y∈AY

P (x, y) log
P (x, y)

P (x)P (y)
(10)

we can define mutual information of a continuous variable as:

I(X; Y ) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (11)

1.2 Limiting density of discrete points

As it has been already noted in the previous section, Shannon’s formulation
of entropy for continuous variables is not an information measure. First
it lacks many properties of discrete entropy and second it is not a result of
any proper derivation. Nevertheless differential entropy has many theoretical
applications.

Jaynes in [12] proposed a different approach to defining entropy of a
continuous variable. Let xi, i = 1, . . . , n be discrete points such that

lim
n→∞

1

n
(number of points in a < x < b) =

∫ b

a

m(x)dx (12)

exists. Then the differences (xi+1−xi) in the neighbourhood of any particular
value of x will tend to zero so that

lim
n→∞

n(xi+1 − xi) = m(xi)
−1. (13)

The discrete probability P (xi) from Definition 2 will transform to

P (xi) = p(xi)(xi+1 − xi). (14)

Equivalently from equation (13)

P (xi) → p(xi)
1

nm(xi)
. (15)

Plugging (14) and (15) into the definition of Shannon entropy Definition 2
we get

H(X) → −
∫

p(x)log

[
p(x)

nm(x)

]

dx. (16)
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Following this reasoning, Jaynes defined the continuous information measure
as:

H(X) = lim
n→∞

[H(X) − log(n)] = −
∫

p(x)log

[
p(x)

m(x)

]

dx. (17)

1.3 Transfer entropy and active information storage

Let {x(t)} and {y(t)} be the realizations of two processes {X(t)} and {Y (t)}.
Paluš in [3] proposed, as an approach to measure the directional information
rate, to measure conditional mutual information I(y(t); x(t + τ) | x(t)). It
is the average amount of information contained in the process {Y (t)} about
the process {X(t)} in its future τ time units ahead conditioned on X(t),
as opposed to the mutual information I(y(t); x(t + τ) which can contain
information about X(t + τ) in X(t). Similarly Shreiber in [4] defines mutual
information rate of two Markov processes {I} and {J} of order k and l by
measuring the deviation from independence given by the Markov property
p(it+1 | i

(k)
t ) = p(it+1 | i

(k)
t , j

(l)
t ) using conditional Kullback-Leibler divergence

in the following form

DKL(P (It+1 | I
(k)
t , J

(l)
t )‖P (It+1 | I

(k)
t , J

(l)
t )) =

=
∑

p(it+1, i
(k)
t , j

(l)
t ) log

p(it+1 | i
(k)
t , j

(l)
t )

p(it+1 | i
(k)
t )

.

These ideas inspired the current definition of transfer entropy.

Definition 9 Let Xt and Yt be two processes. The transfer entropy from the
source Y with the history length k to the target X with history length l is

T
(k,l)
Y →X = I(Xt ;Y

(l)
t−1 | X

(k)
t−1) (18)

where

X
(k)
t−1 = (Xt−1, Xt−1−τk

, Xt−1−2τk
, ..., , Xt−1−(k−1)τk

)

Y
(l)
t−1 = (Yt−1, Yt−1−τl

, Yt−1−2τl
, ..., , Yt−1−(l−1)τl

).

From the identity for conditional mutual information

I(X; Y | Z) = H(X) − I(X; Z) − H(X | Y, Z)
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it follow that transfer entropy can be expressed as

T
(k,l)
Y →X = H(Xt) − I(Xt | X

(k)
t−1) + H(Xt | Y

(l)
t−1,X

(k)
t−1).

The second term on the right in the expression above has a special significance
for us.

Definition 10 The active information storage of the process X with history
length k is

A
(k)
X = I(X

(k)
t−1; Xt) = H(Xt) − H(Xt | X

(k)
t−1). (19)

The active information storage measures the amount of information in the
past state of X

(k)
t of X about its next value Xt.

1.4 Transfer entropy and Granger causality

Transfer entropy is closely related to another concept of dependency, namely
Granger causality. This relationship provides a different interpretation of the
concept of transfer entropy. Lets look take a closer look at it.

We take the definition of Granger causality from [5]

Definition 11 Let us use the notation from Definition 9. Let F (xt|x
(k)
t−1,y

(l)
t−1)

be the distribution function of the target variable Xt conditional on X
(k)
t−1,Y

(l)
t−1

and F (xt|x
(k)
t−1) be the distribution function of Xt conditional on its own past,

then variable Y is said to Granger-cause variable X if

F (xt|x
(k)
t−1,y

(l)
y−1) 6= F (xt|x

(k)
t−1). (20)

Now, consider tow linear regression models

Xt = Xt−1A1 + . . . + Xt−kAk + Yt−1B1 + . . . + Yt−lBl + εt (21)

Xt = Xt−1A
′

1 + . . . + Xt−kA
′

k + ε
′

t (22)

with parameters of the models Ai, A
′

i, B
′

j . Geweke in [10] defined the measure
of Granger causality from Y to X the following way,

F
(k,l)
Y →X = log(|var(ε

′

t)|/|var(εt)|) (23)

where |∙| denotes the determinant. We can observe that this is actually log-
likelihood ratio test under the null hypothesis

H0 : B1 = ∙ ∙ ∙ = Bl = 0 (24)
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when the residuals of the both model is gaussian.
From what has already been written it can be seen that both transfer

entropy and Granger causality are measures of predictive causality. The
similarity is even closer when we consider the joint process Xt, Yt as multi-
variate gaussian. Barnett et. al. in [11] proved that under these conditions
that Granger causality and transfer entropy are equivalent up to factor 2 i.e.

F
(k,l)
Y →X = 2T

(k,l)
Y →X . (25)

1.5 Estimation of transfer entropy and active informa-
tion storage

Estimation of entropy measures is an open problem. Currently there are
few available classes of estimators that one can choose from based on the
properties of the observed data. Transfer entropy is no exception and the best
estimator given some specific criteria is yet to be determined. An overview
of transfer entropy estimators can be found in [5] or [6].

We are going to focus on one specific estimator of the class of estimators
based on k-nearest neighbour search.

1.5.1 Kozachenko-Leonenko Shannon entropy estimator

We are going to put the basic idea of behind Kozachenko-Leonenko differen-
tial entropy estimator as was presented in [7].

Let X be a continuous random variable, f(x) be its density and its dif-
ferential entropy as defined in (9). Specifically

H(X) =

∫ ∞

−∞
f(x) log

1

f(x)
dx. (26)

Then the Monte-Carlo estimate of H(X) is

Ĥ(X) =
1

N

N∑

i=1

log
1

f(xi)
. (27)

Since we don’t know f(xi) it has to be substituted by an estimate f̂(xi) which
we was found using k-nearest neighbours of xi.

Let Pk(ε) be the probability distribution of the distance between xi and
its kth nearest neighbour. Then Pk(ε)dε is the probability that there is one
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point in the r distance from xi where r ∈< ε
2
; ε

2
+ dε

2
>, k − 1 points are at

distances less than r and N − k − 1 points are at distances greater than kth
nearest neighbour. Using multinomial distribution formula we get

Pk(ε)dε =
(N − 1)!

1!(k − 1!)(N − k − 1)!

(
dpi(ε)

dε
dε

)

(pi(ε))
k−1(1 − pi(ε))

N−k−1

(28)
where pi(ε) is the probability mass of ε ball centered at xi, that is

pi(ε) =

∫

‖ξ−xi‖< ε
2

f(ξ)dξ. (29)

It follows from (28) and (29) that the expectation value log pi(ε) is given by

E(log pi(ε)) =

∫ ∞

0

log pi(ε)Pk(ε)dε (30)

= ψ(k) − ψ(N)

where ψ(x) is the digamma function.
If we assume that f(x) is constant in the entire ε ball we can approximate

pi(ε) by
pi(ε) ≈ cdε

df(xi), (31)

where d is the dimension of x and cd is the volume of the d-dimensional unit
ball. For the maximum norm cd = 1.

Finally taking the logarithm and expectation of (31), and combining it
with (30) and (27) we get Kozachenko-Leonenko entropy estimator

Ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑

i=1

log ε(i), (32)

where ε(i) is twice the distance from xi to its kth nearest neighbour.

1.5.2 Kraskov-Stögbauer-Grassberger mutual information estima-
tor

Kraskov, Stögbauer and Grassberger in [7] came with a method of using
Kozachenko-Leoneko entropy estimator to estimate mutual information. Us-
ing the identity

I(X,Y ) = H(X) + H(Y ) − H(X,Y ) (33)
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we are going to obtain an estimator Î(X,Y ).
First we directly apply Kozachenko-Leonenko entropy estimator to joint

random variable Z = (X,Y ) with maximum norm and we get

Ĥ(X,Y ) = −ψ(k) + ψ(N) +
dX + dY

N

N∑

i=1

log ε(i) (34)

where ε(i) is the ε
2

from zi to its kth nearest neighbour and dZ = dX + dY .
For the estimate of H(X) we take the distance ε(i) from (34) as an ap-

proximation of [nx(i)+1]st nearest neighbour of xi, where nx(i) is the number
of points in within ‖xj − xi‖ < ε

2
, and we get

Ĥ(X) = −
1

N

N∑

i=1

ψ(nx(i) + 1) + ψ(N) +
dX

N

∑
log ε(i). (35)

Analogously for the marginal space Y we get

Ĥ(Y ) = −
1

N

N∑

i=1

ψ(ny(i) + 1) + ψ(N) +
dY

N

N∑

i=1

log ε(i). (36)

Combining (33), (34), (35) and (36) we get the first Kraskov, Stögbauer and
Grassberger estimator

I(1)(X,Y ) = ψ(k) − 〈ψ(nx + 1) + ψ(ny + 1)〉 + ψ(N) (37)

where 〈∙ ∙ ∙ 〉 = 1
N

∑N
i=1(∙ ∙ ∙ ).

Another approach Kraskov et al. have taken in [7] to estimate mutual
information was to replace Pk(ε) in (28) in the Kozachenko-Leonenko esti-
mattion method by a two-dimensional density:

Pk(εx, εy) = P
(b)
k (εx, εy) + P

(c)
k (εx, εy) (38)

with

P
(b)
k (εx, εy) =

(
N − 1

k

)
d2[qk

i ]

dεxdεy

(1 − pi)
N−k−1 (39)

and

P
(c)
k (εx, εy) = (k − 1)

(
N − 1

k

)
d2[qk

i ]

dεxdεy

(1 − pi)
N−k−1 (40)
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where qi = qi(εx, εy) is the probability mass of εx × εy rectangle centered at
(xi, yi) and pi is the probability mass of the ε = max{εx, εy} ball using the
maximum norm. With this modifications (30) takes the the following form

E(log qi(εx, εy)) =

∫ ∞

0

∫ ∞

0

log qi(εx, εy)Pk(εx, εy)dεxdεy (41)

= ψ(k) −
1

k
− ψ(N).

Next, following the same reasoning as in the case of I(1)(X,Y ) we arrive at
a second version of Kraskov, Stögbauer and Grassberger estimator, namely

I(2)(X,Y ) = ψ(k) −
1

k
− 〈ψ(nx) + ψ(ny)〉 + ψ(N) (42)

where in this case nx(i) and ny(i) are number of points within ‖xi − xj‖ <=
εx(i)

2
and ‖yi − yj‖ <= εy(i)

2
, respectively.

1.5.3 Estimating transfer entropy and active information storage
estimator

Since active information storage of a process is defined in Definition 10 as
mutual information between its current and past state, it follows from (42)
that the active information estimator is written as

Â
(k)
X = ψ(k) + ψ(N) −

1

k
−
〈
ψ(n

x
(k)
t−1

) + ψ(nxt)
〉

. (43)

As for an estimate of transfer entropy Gomez-Herrero et. al. [8] gener-
alized the idea of Kraskov et. al. [7]. Let V = (V1, . . . , Vm) be a random
m-dimensional vector. Then the entropy combination is defined as

C(VL1 , . . . , VLp) =

p∑

i=1

siH(VL1) − H(V ) (44)

where ∀i ∈< i, p >: Li ⊂< 1,m > and si ∈ {−1, 1} such that
∑p

i=1 siχLi
=

χ<1,m> where χS is characteristic function of S and the entropy combination
estimator is given by

Ĉ(VL1 , . . . , VLp) = F (k) −
p∑

i=1

si 〈F (ki(j))〉 (45)
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where F (k) = ψ(k) − ψ(N) and ki(j) = nVLi
(j) + 1 for j = 1, . . . , N as was

formulated in section 1.5.2.
For example, from equation (33) it can be seen that mutual information

is an entropy combination. Similarly from the one of the expressions for
conditional mutual information

I(X; Y | Z) = H(X,Z) + H(Y, Z) − H(Z) − H(X,Y, Z) (46)

it follows that I(X; Y | Z) is also an entropy combination and combining
(45) and (46) we get the Kraskov, Stögbauer and Grassberger estimator for
conditional mutual information

Î(X; Y | Z) = ψ(k) − 〈ψ(nxz + 1) + ψ(nyz + 1) − ψ(nz + 1)〉 . (47)

Finally directly from the definition 9 we get the Kraskov, Stögbauer and
Grassberger transfer entropy estimator

T̂
(k,l)
Y →X = ψ(k) −

〈
ψ(nxt,xk

t−1
+ 1) + ψ(nyl

t−1,xk
t−1

+ 1) − ψ(nxk
t−1

+ 1)
〉

. (48)

1.6 Estimators parameter determination

The Kraskov, Stögbauer and Grassberger belongs to a class of nonparametric
estimation methods. Nevertheless, since its based on k-nearest neighbour
searches, k in the nearest neighbour algorithm is one of the parameters we
have to chose.

This parameter has to be empirically determined. Kraskov et. al. [7]
suggest k > 1 but not too large because of the increase of systematic errors.
Generally they propose to use k = 2 − 4. Bossomaier et. al. in [5] writes
that for k ≥ 4 the estimator is robust and Wibral in [6] writes that k = 4
has been determined as a good choice for ECoG data.

Another problem is determining the embedding vector as was defined
in Definition 9. For example, in case of transfer entropy we would like as
much of the information that is contained in the target process to condition
out. If we won’t do this, the measured information transfer might be due
to self prediction of the target process and not the dependance of the source
and target processes. The method for finding the optimal values for the
embedding vector is also called state space reconstruction.

There are multiple methods to determine the state space vectors. One
way is to set (m, τ ) such that it maximizes the active information storage.
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Wibral et. al. [6] propose to optimize the embedding parameters using the
Ragwitz-Kantz criterion.

Ragwitz and Kantz in [9] proposed a method to extract a Markov pro-
cess of order m > 1 from observed scalar time series using locally constant
predictors. In the following paragraphs we will briefly describe this method.

Let ~sn = (sn, sn−τ , . . . , sn−(m−1)τ ) be time delay embedding vector such
that sn+1 = g(~sn) exists. Then the locally constant predictor for the unob-
served sn+1 is

ŝn+1 =
1

|Un|

∑

~sk∈Un

sk+1 (49)

where Un = {~sk : ‖~sk − ~sn‖ ≤ ε}. In other words, the mean of the immediate
futures of the ε-neighbours of ~sn. Ragwitz and Kantz in [9] argue that lo-
cally constant predictor is a predictor based on Markov transition probability
assumption p(sn+1|sn, sn−τ , . . . , sτ ) = p(sn+1|sn, sn−τ , . . . , sn−(m−1)τ ). To get
the transition the probabilities p(sn+1|~sn), a locally constant approximation
is used in the form of p(sk+1|~sk) ≈ p̂(sn+1|~sn) ∀ ~sk ∈ Un. The justification of
locally constant predictor follows then from the idea that if we use the mean
square error of predictions e2 =

∑N
i=1(si+1 − ŝi+1)

2 then the best estimator
of sn+1 is ŝn+1 =

∫
~sk∈Un

sk+1p(sk+1|~sn)dsk+1. Thus we take those time delay
embedding vector parameters as optimal which minimize the locally constant
prediction error i.e.

(m, τ ) = arg min
m∈Z,τ∈Z

∥
∥
∥~s − ~̂s

∥
∥
∥ . (50)

1.7 Transfer entropy significance testing

One of the problems that plague all transfer entropy estimators is bias. Either
systematic errors or statistical errors are both properties of estimators that
has to be dealt with. If we observe non-zero value of transfer entropy it
can be due to bias or variance and the transfer entropy estimator (48) is no
exception. Since Kraskov, Stögbauer, Grassberger method is non-parametric
one of the suggested statistical testing options is to use a permutation test
[6] [5].

We are going to test the null hypothesis that there is no relationship
between the source and target variables. First we have to come with surrogate
source variable under to assumption that the null hypothesis is true. One way
to do it is to by permuting y

(l)
t−1 in the joint probability space {xt,x

(k)
t−1,y

(l)
t−1}

thus destroying any predictive dependence of Y to X, and computing TYsur→X
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of the surrogate source variable Ysur. Repeating this procedure multiple times
we can compute one-sided p-value of the test by the following equation:

P (TYsur→X ≥ TY →X) =
∑

Ysur :TYsur→X≥TY →X

P (Ysur). (51)

If the p-value is less 0.05 we reject the null hypothesis at the 5% significance
level.
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