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Previous results

Artificial neural networks:

Task performance is maximized when the network is
operating in a state near the edge of chaos, or stability
(Bertschinger and Natschläger, 2004)

Information measures are maximized near the edge of
stability (Boedecker et. al., 2012)

Biological neural networks:

Cortical circuits may be tuned to criticality for optimized
behavior (Beggs, 2008)



Echo state network:
Model



Echo state network
General model

Update equations:

x(t) = tanh(w inu(t) + Wx(t − 1))

x(t) ∈ RNx , w in ∈ RNx , W ∈ RNx×Nx

Output layer:

y(t) = Woutx(t)

y(t) ∈ RNy , Wout ∈ RNy×Nx

Learning:

Wout = UX+

X+ = X>(XX>)−1



Information measures

Transfer entropy:

TE (k,l)
Y→X = I(Xt : Y(l)
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Active information storage:
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Information measures
Kraskov-Grassberger-Stögbauer estimators

Transfer entropy:

T̂E
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where Ψ denotes the digamma function, n(∙) denotes the
number of nearest neighbors in ε-hypercubes centered at (∙) in
the marginal spaces where ε is given by the Chebyshev
distance of the realization (xt , x(k)

t−1, y(l)
t−1) at time step t to its

K th nearest neighbor in the joint space, and 〈∙〉t denotes the
time-average.

Active information storage:
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Estimating criticality
Maximum Lyapunov characteristic exponent

Let x(t + 1) = f(x(t)) be a discrete time dynamical system and
x

′
(0) = x(0) + δx(0) be the initial conditions a trajectory x

′
(t)

obtained by an infinitesimal displacement from x(0) such that
γ0 = ‖δx(0)‖ � 1. Then the maximum Lyapunov characteristic
exponent is

λ = lim
t→∞

1
t

ln
(

γt

γ0

)

<∞

where γt = ‖x
′
(t)− x(t)‖.

γt ∼ γ0eλt ⇒






λ > 0 sensitive to initial conditions

λ ≈ 0 edge of criticality

λ < 0 sub-critical



Experimental setup
ESN model

N=100 reservoir units

single input unit
output units

120 for the MC task
single unit for the prediction task

w in
j ∈ U(−0.1; 0.1), ∀j = 1, . . . , N

w res
ij ∈ N (0; 0.5), ∀i , j = 1, . . . , N

100 samples transients

1000 samples training

2000 samples testing



Experimental setup
Performance measures

Prediction tasks:

NRMSE=

√
〈(ŷ(t)− y(t))2 〉t
〈(y(t)− 〈y(t)〉t)2 〉t

MC task:

MC =

qmax∑

q=1

MCq =

qmax∑

q=1

cov2(u(t − q), yq(t))
var(u(t)) ∙ var(yq(t))



Benchmark tasks
MC

∀ t : u(t) ∼ U(−1; 1)



Benchmark tasks
NARMA

u(t+1) = 0.2 u(t)+0.004 u(t)
29∑

i=0

u(t−i)+1.5 q(t−29)q(t)+0.001

where ∀ t : q(t) ∼ U(0; 0.5)



Benchmark tasks
Mackey-Glass system

dy
dt

= 0.2
y17

1 + y10
17

− 0.1y

where u17 is the value of u at time t − 17.



Benchmark tasks
Lorenz system

dx
dt

= 10(y − x)

dy
dt

= x(28− z)− y

dz
dt

= xy −
8
3

z



Information-theoretical measures around criticality
Experimental setup

ESN:

fixed w in

w res
ij ∈ N (0; σ) such that log σ ∈ [−1.5;−0.25] in 26 steps 5

instances per value σ

Information measures:
TE

Target - k = 2, τk = 1
Source - l = 1, τl = 1

AIS - k = 2, τk = 1

4-NN



Information-theoretical measures around criticality
MC task



Information-theoretical measures around criticality
NARMA task



Information-theoretical measures around criticality
M–G task



Information-theoretical measures around criticality
Lorenz task



A closer look at information measures
Reservoir neuron signal embedding

Ragwitz-Kantz criterion:

(k , τ ) = argmin
k∈Z,τ∈Z

‖x − x̂(k , τ )‖

where
x = (x1, . . . , xn), x̂ = (x̂1, . . . , x̂n)

Locally constant predictor:

x̂t+1 =
1

card(Ut)

∑

xl∈Ut

xl+1

Ut = {x l : ‖x l − xt‖ ≤ ε}, xt = (xt , xt−τk , xt−2τk , ..., , xt−(k−1)τ )



A closer look at information measures
Reservoir neuron signal embedding: Experimental setup

Ragwitz-Kantz search constrains:
k = 1, . . . , 6
τ = 1, . . . , 6

Reservoir spectral radius scalings:
Unstable: Unscaled
Stable: ρ = 0.6
Close to criticality: ρ = 0.95

100 instances per scaling and task



A closer look at information measures
Reservoir neuron signal embedding: MC and NARMA tasks



A closer look at information measures
Reservoir neuron signal embedding: M–G and Lorenz tasks



A closer look at information measures
Reservoir neuron signal embedding

Most frequent (k , τ ) pairs for each task and scaling

XXXXXXXXXXXScaling
Task MC NARMA M–G Lorenz

k τ k τ k τ k τ

init 6 1 6 1 6 1 6 1
ρ = 0.6 4 1 4 1 2 1 2 3
ρ = 0.95 6 1 6 1 2 1 2 2



A closer look at information measures
Experimental setup

ESN:
1 instance for all tasks and scalings

win
j ∈ U(−0.1; 0.1), ∀j = 1, . . . , N

wres
ij ∈ N (0; 0.5), ∀i , j = 1, . . . , N

Reservoir spectral radius scalings
Unstable: Unscaled
Stable: ρ = 0.6
Close to criticality: ρ = 0.95

Information measures:
TE

Target - determined by Ragwitz-Kantz criterion
Source - l = 1, τl = 1

AIS - determined by Ragwitz-Kantz criterion

4-NN



A closer look at information measures
TE permutation test

H0: TY→X = 0 vs. H1: TY→X > 0

p-value:

P(TYsur→X ≥ TY→X ) =
∑

Ysur :T̂Ysur →X≥T̂Y→X

P(Ysur )

where Ysur is permutaion of

Y = (y(k)
n , y(k)

n−1, . . . , y(k)
1 ).

p-value was computed from 100 T̂Ysur

T̂Y→X ← 0 if P(TYsur→X ≥ TY→X ) > 0.05



A closer look at information measures
TE matrices: MC and NARMA tasks



A closer look at information measures
TE matrices: M–G and Lorenz tasks



A closer look at information measures
Relative entropy of TE

∣
∣
∣H(TE(k ,l)

RES)
∣
∣
∣ = D̂KL (TE(k ,l)

RES ‖U(0; max TE(k ,l)
RES))

= ln(max TE(k ,l)
RES)− ĤKL (TE(k ,l)

RES)

where ln(max TE(k ,l)
RES) is the exact differential entropy of the

uniform distribution with the support in [0; max TE(k ,l)
RES], ĤKL (∙) is

the Kozachenko-Leonenko differential entropy estimator and
TE(k ,l)

RES is the distribution of the estimates of transfer entropies in
the reservoir.



A closer look at information measures
TE distribution



A closer look at information measures
Active Information Storage



A closer look at information measures
Quantification of used measures

MC task Unscaled ρ = 0.6 ρ = 0.95
MC 0.06 17.8 32.8

Average TE 0.007 0.091 0.047
Average AIS 0.027 0.146 0.151

Rel. entr. of TE 0.981 0.629 1.147
LE 0.53 −0.52 −0.06

NARMA Unscaled ρ = 0.6 ρ = 0.95
NRMSE 2.143 0.98 0.83

Average TE 0.007 0.087 0.052
Average AIS 0.023 0.267 0.247

Rel. entr. of TE 1.086 0.783 1.174
LE 0.52 −0.53 −0.062

Mackey–Glass Unscaled ρ = 0.6 ρ = 0.95
NRMSE 1.13 0.00025 0.00026

Average TE 0.007 0.154 0.248
Average AIS 0.029 3.204 3.073

Rel. entr. of TE 0.266 0.386 0.587
LE 0.53 −0.52 −0.062

Lorenz Unscaled ρ = 0.6 ρ = 0.95
NRMSE 0.54 0.00012 0.0013

Average TE 0.007 0.087 0.157
Average AIS 0.025 3.157 2.971

Rel. entr. of TE 1.018 0.642 0.231
LE 0.52 −0.74 −0.28



Conclusion

Two complexity classes in tested tasks
stochastic: MC/NARMA - benefit from criticality
deterministic: M–G/Lorenz - do not benefit from criticality

Information measures are maximized at phase transition
from stable to unstable regime

Between complexity classes: increase in performance is
associated with increase in global TE and AIS, and
decrease of relative entropy of TE

Within tasks: in stable regions there seems to be an
inverse relationship between performance and global TE.

Higher information flow does not mean better performance.

Task specific
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