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2 Theoretical background

2.1 General notion of artificial neural networks

Artificial neural networks are getting more and more attention over the last decades

as advances in raw computational power make it possible to implement these com-

putationally heavy algorithms as well as recent achievements in better than human

performance on certain tasks. In the next paragraphs we provide basic theoretical

concepts behind artificial neural networks.

2.1.1 Neural network model

Haykin [2] defines a neural network in the following way:

Definition 1 A neural network is a massively parallel distributed processor made up of

simple processing units, which has a natural property for storing experiential knowledge

and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process.

2. Interneuron connection strengths, known as synaptic weights, are used to store

acquired knowledge.

The basic information-processing unit is called a neuron. In mathematical terms

the neuron k of a system consisting of N neurons, can be written as a pair of equations:

uk =
m∑

j=1

wkjxj (1)

yk = ϕ(uk + bk) (2)

where x1, x2, . . . , xm are the input signals, wk1, wk2, . . . , wkm are synaptic weights, uk

is called linear combiner output due to the input signals, bk is called bias, ϕ(∙) is the

activation function, and yk is the output signal of the neuron.

There are two basic activation functions:

1. Threshold function

ϕ(v) =






1 if v ≥ 0

0 if v < 0

(3)
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2. Sigmoid function

• logistic function

ϕ(v) =
1

1 + e−av
(4)

• hyperbolic tangent function

ϕ(v) = tanh(v). (5)

2.1.2 Neural network as an approximation

One way to look at artificial neural networks is as a mapping

f : X → Y

where X is the set of inputs and Y is the set of outputs. In the language of statistics

we are dealing with nonparametric statistical inference. This view is strongly sup-

ported by an important theoretical result proved by Hornik [5], namely the universal

approximation theorem.

Theorem 1 Let

N
(n)
k (ϕ) =

{

y : Rk → R | y(x) =
n∑

i=1

βiϕ(
m∑

j=1

wijxj − bi)

}

denote a set of all functions implemented by a network with n hidden units and one

output unit. If ϕ is continuous, bounded and nonconstant, then N(n)
k is dense in C(X)

for all compact subsets X of Rk (C(X) is the space of all continuous functions on X).

Here we can observe some similarities to the Stone-Weierstrass theorem (it implies that

the set of all polynomials of X is dense in C(X)). The process of estimation of the

synaptical weights wij for i = 1, . . . , n and j = 1, . . . ,m is called learning.

2.1.3 Classes of neural networks

The neurons of a neural network can be organized into many different structures. Many

have been already developed and successfully applied to different tasks. The structure

is called network architecture and in general there are two fundamentally different

classes of network architectures:
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1. Feedforward networks

The structure of neurons is organized in layers. There is an input layer, hidden

layer and output layer. The synaptical weights are only between neurons of

two concurrent layers and only in one direction. In other words the output

signals from one layer serve as input signals to the neurons in the second layer.

We say that the network is fully connected if every unit in each layer of the

network is connected to every unit in the next layer. Otherwise we say that the

network is partially connected. In general there can be multiple hidden layers.

Theorem 1 deals with a feedforward network with a single hidden layer. The

standard learning algorithm for feedforward networks is called backpropagation

of error. Basically it is a form of gradient based optimisation method.

2. Recurrent networks

A recurrent neural network has at least one feedback loop. Feedback as is used in

dynamical systems, that is when the output influences the input of an element

of the system. In the setting of neural network let us consider a linear operators

A and B, and an input-output relationship between two neurons

yk(n) = A[x
′

j(n)]

and

x
′

j(n) = xj(n) + B[yk(n)].

Modifying these equations we get

yk(n) =
A

1 − AB
[xj(n)].

We call the term A
1−AB

a closed-loop operator of the system, and AB the open-

loop operator. Generally the existence of feedback loops in the neural network

make the process of learning very difficult.

2.2 Echo state network

Echo state networks (ESNs) belong to the class of recurrent neural networks. This

type of architecture was first proposed by Jaeger [3]. In the next paragraphs we will

provide the structure and some properties of an echo state network.
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2.2.1 Architecture

The architecture consists of input layer, reservoir and output layer. The reservoir is a

fully connected recurrent hidden layer. The update equations are given by

x̄(t) = tanh(Win[1;u(t)] + Wx(t − 1)) (6)

x(t) = (1 − α)x(t − 1) + αx̄(t) (7)

where x(t) ∈ RNx is vector of reservoir neuron activations and x̄(t) ∈ RNx is its update

at time step t, tanh(∙) is the activation function, Win ∈ RNx×(1+Nu) is the input weight

matrix, W ∈ RNx×Nx is the recurrent weight matrix, and α ∈ (0, 1] is the leaking rate.

The output is defined as

y(t) = Wout[1;u(t);x(t)] (8)

where y(t) ∈ RNy is network output and Wout ∈ RNy×(1+Nu+Nx) is the output weight

matrix.

Lukoševičius [6] writes that the reservoir serves two functions:

1. as a high-dimensional nonlinear expansion, similarly to kernel methods, where

input in input space is not linearly separable and by projecting in a higher di-

mensional space it may become linearly separable.

2. as a dynamical short-term memory.

2.2.2 Echo state property

Jaeger in [3] defined the term echo state property, which is a necessary condition for

the echo state network to work. The definition for a network with no output feedback

is as follows:

Definition 2 Assume that input is drawn from a compact input space U and network

states lie in a compact set A. Assume that the network has no output feedback con-

nections. Then, the network has echo states, if the network state x(n) is uniquely

determined by any left-infinite input sequence ū−∞. More precisely, this means that for

every input sequence . . . ,u(n−1),u(n) ∈ U−N , for all state sequences . . . ,x(n−1),x(n)

and x
′
(n−1),x

′
(n) ∈ A−N, where x(i) = T(x(i−1),u(i)) and x

′
(i) = T(x

′
(i−1),u(i)),

it holds that x(n) = x
′
(n).
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2.2.3 Hyperparameters

The specific instance of an echo state network is defined by a set of parameters, namely

(Win,W, α). In the next paragraphs we will outline the principles for choosing these

parameters. We are going to follow the recommendations according to Lukoševičius

[6].

1. Reservoir matrix W

• Size of reservoir - the consensus is that the larger number of neurons in the

reservoir the better, but on the other there is danger of over-parametrization

and over-fitting. In general

T >= 1 + Nx + Nu

where T is the size of the dataset, Nx is the number of neurons in reservoir,

and Nu is the dimension of the input.

• Distribution of reservoir weights - at the initialisation step of the algorithm

the elements of the matrix W are randomly generated and not much ma-

nipulated afterwards. The weights are drawn independently from uniform

or normal distribution symmetrical around zero.

• Spectral radius - as was stated in section 2.2.2 the existence of the echo

state property in an echo state network is essential for the network to work.

Jaeger [3] states the network has no echo state when the spectral radius of

the reservoir matrix is |λmax(W)| > 1, the admissible state set is [−1, 1]N

and if the input set contains 0. Thus is standard practice to scale the

reservoir matrix W so that |λmax(W)| < 1. The specific value |λmax(W)|

has to determined experimentally in way that maximizes performance.

2. Input matrix Win

Similarly to the initialization of the reservoir matrix W, the elements of input

matrix Win randomly selected either from uniform or normal symmetrical dis-

tribution.

3. Leaking rate α

8



Assume a dynamical system

ẋ = −x + tanh(Win[1;u] + Wx)

and using a discretization of the system

ẋ ≈
x(t) − x(t − 1)

4t

we get

x(t) = (1 −4t)x(t − 1) + 4t tanh(Win[1;u(t)] + Wx(t − 1)). (9)

By comparing equations (7) and (9) we can regard the leaking rate parameter as

the size of the discrete time step and scale accordingly. In practice this parameter

has to be determined experimentally.

2.2.4 Learning process

As can be seen from previous sections there hasn’t been any training involved, yet.

The the only training is in in finding the output layer weight matrix Wout. Precisely

solving

Ytarget = WoutX (10)

where Ytarget ∈ RNy×T , X ∈ R(1+Nu+Nx)×T and T the size of the training set. Lukoše-

vičius [6] proposes to use regression with Tikhonov regularization

Wout = YtargetXT(XXT + βI)−1 (11)

where β ∈ R is the regularization parameter and has to be determined experimentally.

When β = 0 we get

Wout = YtargetX+ (12)

where X+ = XT(XXT)−1 is the right Moore-Penrose inverse.

2.2.5 Short term memory capacity

As has been already stated, due to the feedback loops, echo state networks can be

regarded as a dynamic short-term memory. Jaeger [4] defined a measure to quantify

the reservoirs ability to store and recall past input. It is called the short-term memory

capacity:
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Definition 3 Let ν(n) ∈ U (where −∞ < n < +∞ and U ∈ R is a compact interval)

be a single-channel stationary input signal. Assume that we have a recurrent neural

network, specified by its internal weight matrix W, its input weight (column) vector

win and the unit output functions f , f out. The network receives ν(n) at its input unit.

For a given delay k and an output unit yk with connection weight (row) vector wout
k we

consider the determination coefficient

d[wout
k ](ν(n − k), yk(n)) = (13)

= d



ν(n − k),wout
k




ν(n)

x(n)









=
cov2(ν(n − k), yk(n))

σ2(ν(n))σ2(yk(n)))

where cov denotes covariance and σ2 variance.

1. The k-delay short term memory capacity of the network is defined by

MCk = max
wout

k

d[wout
k ](ν(n − k), yk(n)). (14)

2. The short term memory capacity of the network is

MC =
∞∑

k=1

MCk. (15)

Jaeger in [4] also proved a theoretical limit for the short-term memory capacity:

Proposition 1 The memory capacity for recalling i.i.d input by a N-unit recurrent

neural network with linear output units is bounded by N.

2.2.6 Lyapunov characteristic exponent

The reservoir of an echo state network can be looked at as a discrete dynamical system

and the performance of the the whole network depends on its stability. A popular

measure of the degree of the instability of a dynamical system is called the maximum

Lyapunov characteristic exponent.

Definition 4 Let

x(t + 1) = f(x(t)) (16)
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be a discrete time dynamical system and

x
′
(0) = x(0) + δx(0) (17)

be the initial conditions a trajectory x
′
(t) obtained by an infinitesimal displacement

from x(0) such that γ0 = ‖δx(0)‖ � 1. Then the maximum Lyapunov characteristic

exponent is

λ = lim
t→∞

1

t
ln

(
γt

γ0

)

< ∞ (18)

where γt = ‖x
′
(t) − x(t)‖.

From the approximation

γt ∼ γ0e
λt (19)

it it can be seen that when λ > 0 the system is sensitive to initial conditions and

therefore is chaotic. For λ < 0 the system is sub-critical. The value λ ≈ 0 is when

phase transition occurs and is often referred to as the edge of criticality or critical

point.

For numerical computation of λ we implement a popular method according to

Cencini et.al [7].

1. We start with the infinitesimal perturbation γ0 and evolve to system one time

step ahead, thus getting a normalized tangent vector w(1) = x
′
(1)−x(1)

γ0
and setting

α(1) = ‖w(1)‖.

2. Next we rescale w(1) to w(1)
‖w(1)‖ and evolve system one step ahead again. We

repeat this process and store the amplitudes α(t) = ‖w(t)‖.

3. The maximum Lyapunov exponent is obtained as:

λ = lim
t→∞

1

t

t∑

i=1

ln(α(i)). (20)

In the echo state network setting we set the infinitesimal perturbation to every neuron

unit individually and compute λi of the i − th perturbed for every i = 1, . . . , N of the

N unit reservoir. The final estimated is computed as average λ =< λi >.
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2.2.7 Orthogonalization and orthonormalization of reservoir

We have already mentioned reservoir matrix scaling according to the desired spectral

radius. Another ways to scale the reservoir matrix is in relation to orthogonality. More

precisely to satisfy the condition W>W = I. Farkaš et. al. [8] proposed a gradient

based orthogonalization and orthonormalization methods and have shown that the

theoretical limits in the memory capacity task, proved by Jaeger [4], can be achieved

via this methods.

The update formula in case of the orthogonalization method is

4 wi = −η
4

‖wi‖
(I − w̃iw̃

>
i )(W̃W̃>)w̃i (21)

where η is the learning rate and W̃ denotes matrix W with normalized columns.

The update formula for the orthonormalization method is

4 wi = −η 4 (WW>W − W). (22)

2.3 Information measures

2.3.1 Introduction to information theory

In order to get an insight into transfer entropy and active information storage we

have to define some key information theoretic concepts. We will follow the definitions

according to MacKay [9]. At first we define the Shannon information content and

entropy of a discrete random variable X.

Definition 5 Shannon information content of an outcome x is defined to be

h(x) = log2

1

P (x)
. (23)

The units are called bits.

Definition 6 The entropy of an ensemble X is defined to be the average Shannon

information content of an outcome:

H(X) =
∑

x∈AX

P (x) log
1

P (x)
for P (x) 6= 0 (24)

= 0 for P (x) = 0
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since limθ→0+ θ log 1
θ

= 0.

Next we need to define conditional entropy.

Definition 7 The conditional entropy of X given y = bk is the entropy of the proba-

bility distribution P (x | y = bk).

H(X | y = bk) =
∑

x∈AX

P (x | y = bk) log
1

P (x | y = bk)
(25)

Definition 8 The conditional entropy of X given Y is average, over y, of the condi-

tional entropy of X given y.

H(X | Y ) =
∑

y∈Ay

P (y)

[
∑

x∈AX

P (x | y) log
1

P (x | y)

]

(26)

=
∑

x∈AX ,y∈AY

P (x, y) log
1

P (x | y)
.

The interpretation of conditional transfer entropy is that it measures the average un-

certainty that remains about X when Y is known.

Now we can define mutual information and conditional mutual information.

Definition 9 The mutual information between X and Y is

I(X; Y ) = H(X) − H(X | Y ). (27)

Mutual information measures the reduction of uncertainty about X that results from

learning the value of y.

Definition 10 The conditional mutual information between X and Y given z = ck is

the mutual information between the random variables X and Y in the joint ensemble

P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (28)

Definition 11 The conditional mutual information between X and Y given z = ck is

the mutual information between the random variables X and Y in the joint ensemble

P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (29)
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Definition 12 The conditional mutual information between X and Y given Z is the

average over z of the conditional mutual information from Definition 11.

I(X; Y | Z) = H(X | Z) − H(X | Y, Z). (30)

Entropy and all other measures based on entropy we have just introduced are defined

for a discrete set of probabilities. Shannon in [10] analogously defined the entropy of a

continuous distribution with the density distribution function p(x) as

H(X) =

∫ ∞

−∞
p(x) log

1

p(x)
dx. (31)

This quantity is sometimes called differential entropy although this is not a measure

of uncertainty of the random variable X as Shannon intended it to be.

Similarly, from the identity

I(X; Y ) =
∑

x∈AX ,y∈AY

P (x, y) log
P (x, y)

P (x)P (y)
(32)

we can define mutual information of a continuous variable as:

I(X; Y ) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (33)

2.3.2 Limiting density of discrete points

As it has been already noted in the previous section, Shannon’s formulation of entropy

for continuous variables is not an information measure. First it lacks many properties

of discrete entropy and second it is not a result of any proper derivation. Nevertheless

differential entropy has many theoretical applications.

Jaynes in [20] proposed a different approach to defining entropy of a continuous

variable. Let xi, i = 1, . . . , n be discrete points such that

lim
n→∞

1

n
(number of points in a < x < b) =

∫ b

a

m(x)dx (34)

exists. Then the differences (xi+1 − xi) in the neighbourhood of any particular value

of x will tend to zero so that

lim
n→∞

n(xi+1 − xi) = m(xi)
−1. (35)

The discrete probability P (xi) from Definition 6 will transform to

P (xi) = p(xi)(xi+1 − xi). (36)
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Equivalently from equation (35)

P (xi) → p(xi)
1

nm(xi)
. (37)

Plugging (36) and (37) into the definition of Shannon entropy Definition 6 we get

H(X) → −
∫

p(x)log

[
p(x)

nm(x)

]

dx. (38)

Following this reasoning, Jaynes defined the continuous information measure as:

H(X) = lim
n→∞

[H(X) − log(n)] = −
∫

p(x)log

[
p(x)

m(x)

]

dx. (39)

2.3.3 Transfer entropy and active information storage

Let {x(t)} and {y(t)} be the realizations of two processes {X(t)} and {Y (t)}. Paluš

in [11] proposed, as an approach to measure the directional information rate, to mea-

sure conditional mutual information I(y(t); x(t + τ) | x(t)). It is the average amount

of information contained in the process {Y (t)} about the process {X(t)} in its fu-

ture τ time units ahead conditioned on X(t), as opposed to the mutual information

I(y(t); x(t+τ) which can contain information about X(t+τ) inX(t). Similarly Shreiber

in [12] defines mutual information rate of two Markov processes {I} and {J} of order

k and l by measuring the deviation from independence given by the Markov property

p(it+1 | i
(k)
t ) = p(it+1 | i

(k)
t , j

(l)
t ) using conditional Kullback-Leibler divergence in the

following form

DKL(P (It+1 | I
(k)
t , J

(l)
t )‖P (It+1 | I

(k)
t , J

(l)
t )) =

=
∑

p(it+1, i
(k)
t , j

(l)
t ) log

p(it+1 | i
(k)
t , j

(l)
t )

p(it+1 | i
(k)
t )

.

These ideas inspired the current definition of transfer entropy.

Definition 13 Let Xt and Yt be two processes. The transfer entropy from the source

Y with the history length k to the target X with history length l is

T
(k,l)
Y →X = I(Xt ;Y

(l)
t−1 | X

(k)
t−1) (40)

where

X
(k)
t−1 = (Xt−1, Xt−1−τk

, Xt−1−2τk
, ..., , Xt−1−(k−1)τk

)

Y
(l)
t−1 = (Yt−1, Yt−1−τl

, Yt−1−2τl
, ..., , Yt−1−(l−1)τl

).
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From the identity for conditional mutual information

I(X; Y | Z) = H(X) − I(X; Z) − H(X | Y, Z)

it follow that transfer entropy can be expressed as

T
(k,l)
Y →X = H(Xt) − I(Xt | X

(k)
t−1) + H(Xt | Y

(l)
t−1,X

(k)
t−1).

The second term on the right in the expression above has a special significance for us.

Definition 14 The active information storage of the process X with history length k

is

A
(k)
X = I(X

(k)
t−1; Xt) = H(Xt) − H(Xt | X

(k)
t−1). (41)

The active information storage measures the amount of information in the past state

of X(k)
t of X about its next value Xt.

2.3.4 Transfer entropy and Granger causality

Transfer entropy is closely related to another concept of dependency, namely Granger

causality. This relationship provides a different interpretation of the concept of transfer

entropy. Lets look take a closer look at it.

We take the definition of Granger causality from [13]

Definition 15 Let us use the notation from Definition 13. Let F (xt|x
(k)
t−1,y

(l)
t−1) be the

distribution function of the target variable Xt conditional on X
(k)
t−1,Y

(l)
t−1 and F (xt|x

(k)
t−1)

be the distribution function of Xt conditional on its own past, then variable Y is said

to Granger-cause variable X if

F (xt|x
(k)
t−1,y

(l)
y−1) 6= F (xt|x

(k)
t−1). (42)

Now, consider tow linear regression models

Xt = Xt−1A1 + . . . + Xt−kAk + Yt−1B1 + . . . + Yt−lBl + εt (43)

Xt = Xt−1A
′

1 + . . . + Xt−kA
′

k + ε
′

t (44)

with parameters of the models Ai, A
′

i, B
′

j . Geweke in [18] defined the measure of

Granger causality from Y to X the following way,

F
(k,l)
Y →X = log(|var(ε

′

t)|/|var(εt)|) (45)
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where |∙| denotes the determinant. We can observe that this is actually log-likelihood

ratio test under the null hypothesis

H0 : B1 = ∙ ∙ ∙ = Bl = 0 (46)

when the residuals of the both model is gaussian.

From what has already been written it can be seen that both transfer entropy and

Granger causality are measures of predictive causality. The similarity is even closer

when we consider the joint process Xt, Yt as multivariate gaussian. Barnett et. al. in

[19] proved that under these conditions that Granger causality and transfer entropy

are equivalent up to factor 2 i.e.

F
(k,l)
Y →X = 2T

(k,l)
Y →X . (47)

2.3.5 Estimation of transfer entropy and active information storage

Estimation of entropy measures is an open problem. Currently there are few available

classes of estimators that one can choose from, based on the properties of the observed

data. Transfer entropy is no exception and the best estimator given some specific

criteria is yet to be determined. An overview of transfer entropy estimators can be

found in [13] or [14].

We are going to focus on one specific estimator of the class of estimators based on

k-nearest neighbour search.

Kozachenko-Leonenko Shannon entropy estimator We are going to put the ba-

sic idea of behind Kozachenko-Leonenko differential entropy estimator as was presented

in [15].

Let X be a continuous random variable, f(x) be its density and its differential

entropy as defined in (9). Specifically

H(X) =

∫ ∞

−∞
f(x) log

1

f(x)
dx. (48)

Then the Monte-Carlo estimate of H(X) is

Ĥ(X) =
1

N

N∑

i=1

log
1

f(xi)
. (49)
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Since we don’t know f(xi) it has to be substituted by an estimate f̂(xi) which we are

going to find using k-nearest neighbours of xi.

Let Pk(ε) be the probability distribution of the distance between xi and its kth

nearest neighbour. Then Pk(ε)dε is the probability that there is one point in the r

distance from xi where r ∈< ε
2
; ε

2
+ dε

2
>, k − 1 points are at distances less than r and

N−k−1 points are at distances greater than kth nearest neighbour. Using multinomial

distribution formula we get

Pk(ε)dε =
(N − 1)!

1!(k − 1!)(N − k − 1)!

(
dpi(ε)

dε
dε

)

(pi(ε))
k−1(1 − pi(ε))

N−k−1 (50)

where pi(ε) is the probability mass of ε ball centered at xi, that is

pi(ε) =

∫

‖ξ−xi‖< ε
2

f(ξ)dξ. (51)

It follows from (50) and (51) that the expectation value log pi(ε) is given by

E(log pi(ε)) =

∫ ∞

0

log pi(ε)Pk(ε)dε (52)

= ψ(k) − ψ(N)

where ψ(x) is the digamma function.

If we assume that f(x) is constant in the entire ε ball we can approximate pi(ε) by

pi(ε) ≈ cdε
df(xi), (53)

where d is the dimension of x and cd is the volume of the d-dimensional unit ball. For

the maximum norm cd = 1.

Finally taking the logarithm and expectation of (53), and combining it with (52)

and (49) we get Kozachenko-Leonenko entropy estimator

Ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑

i=1

log ε(i), (54)

where ε(i) is twice the distance from xi to its kth nearest neighbour.

Kraskov-Stögbauer-Grassberger mutual information estimator Kraskov, Stög-

bauer and Grassberger in [15] came with a method of using Kozachenko-Leoneko en-

tropy estimator to estimate mutual information. Using the identity

I(X,Y ) = H(X) + H(Y ) − H(X,Y ) (55)
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we are going to obtain an estimator Î(X,Y ).

First we directly apply Kozachenko-Leonenko entropy estimator to joint random

variable Z = (X,Y ) with maximum norm and we get

Ĥ(X,Y ) = −ψ(k) + ψ(N) +
dX + dY

N

N∑

i=1

log ε(i) (56)

where ε(i) is the ε
2
from zi to its kth nearest neighbour and dZ = dX + dY .

For the estimate of H(X) we take the distance ε(i) from (56) as an approximation

of [nx(i) + 1]st nearest neighbour of xi, where nx(i) is the number of points in within

‖xj − xi‖ < ε
2
, and we get

Ĥ(X) = −
1

N

N∑

i=1

ψ(nx(i) + 1) + ψ(N) +
dX

N

∑
log ε(i). (57)

Analogously for the marginal space Y we get

Ĥ(Y ) = −
1

N

N∑

i=1

ψ(ny(i) + 1) + ψ(N) +
dY

N

N∑

i=1

log ε(i). (58)

Combining (55), (56), (57) and (58) we get the Kraskov, Stögbauer and Grassberger

estimator

I(1)(X,Y ) = ψ(k) − 〈ψ(nx + 1) + ψ(ny + 1)〉 + ψ(N) (59)

where 〈∙ ∙ ∙ 〉 = 1
N

∑N
i=1(∙ ∙ ∙ ).

Estimating transfer entropy and active information storage estimator Since

active information storage of a process is defined in Definition 14 as mutual information

between its current and past state, it follows from (59) that the active information

estimator is written as

Â
(k)
X = ψ(k) + ψ(N) −

〈
ψ(n

x
(k)
t−1

+ 1) + ψ(nxt + 1)
〉

. (60)

As for an estimate of transfer entropy Gomez-Herrero et. al. [16] generalized the

idea of Kraskov et. al. [15]. Let V = (V1, . . . , Vm) be a random m-dimensional vector.

Then the entropy combination is defined as

C(VL1 , . . . , VLp) =

p∑

i=1

siH(VL1) − H(V ) (61)
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where ∀i ∈< i, p >: Li ⊂< 1,m > and si ∈ {−1, 1} such that
∑p

i=1 siχLi
= χ<1,m>

where χS is characteristic function of S and the entropy combination estimator is given

by

Ĉ(VL1 , . . . , VLp) = F (k) −
p∑

i=1

si 〈F (ki(j))〉 (62)

where F (k) = ψ(k)−ψ(N) and ki(j) = nVLi
(j) + 1 for j = 1, . . . , N as was formulated

in section 2.3.5.

For example, from equation (55) it can be seen that mutual information is an

entropy combination. Similarly from the one of the expressions for conditional mutual

information

I(X; Y | Z) = H(X,Z) + H(Y, Z) − H(Z) − H(X,Y, Z) (63)

it follows that I(X; Y | Z) is also an entropy combination and combining (62) and

(63) we get the Kraskov, Stögbauer and Grassberger estimator for conditional mutual

information

Î(X; Y | Z) = ψ(k) − 〈ψ(nxz + 1) + ψ(nyz + 1) − ψ(nz + 1)〉 . (64)

Finally directly from the definition 13 we get the Kraskov, Stögbauer and Grassberger

transfer entropy estimator

T̂
(k,l)
Y →X = ψ(k) −

〈
ψ(nxt,xk

t−1
+ 1) + ψ(nyl

t−1,xk
t−1

+ 1) − ψ(nxk
t−1

+ 1)
〉

. (65)

2.3.6 Estimators parameter determination

The Kraskov, Stögbauer and Grassberger belongs to a class of nonparametric estima-

tion methods. Nevertheless, since its based on k-nearest neighbour searches, k in the

nearest neighbour algorithm is one of the parameters we have to chose. This parameter

has to be empirically determined. Kraskov et. al. [15] suggest k > 1 but not too large

because of the increase of systematic errors. Generally they propose to use k = 2 − 4.

Bossomaier et. al. in [13] writes that for k ≥ 4 the estimator is robust and Wibral in

[14] writes that k = 4 has been determined as a good choice for ECoG data.

Another problem is determining the embedding vector as was defined in Defini-

tion 13. For example, in case of transfer entropy we would like as much of the infor-

mation that is contained in the target process to condition out. If we won’t do this,
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the measured information transfer might be due to self prediction of the target process

and not the dependance of the source and target processes. The method for finding

the optimal values for the embedding vector is also called state space reconstruction.

There are multiple methods to determine the state space vectors. One way is to

set (m, τ ) such that it maximizes the active information storage. Wibral et. al. [14]

propose to optimize the embedding parameters using the Ragwitz-Kantz criterion.

Ragwitz and Kantz in [17] proposed a method to extract a Markov process of

order m > 1 from observed scalar time series using locally constant predictors. In the

following paragraphs we will briefly describe this method.

Let ~sn = (sn, sn−τ , . . . , sn−(m−1)τ ) be time delay embedding vector such that sn+1 =

g(~sn) exists. Then the locally constant predictor for the unobserved sn+1 is

ŝn+1 =
1

|Un|

∑

~sk∈Un

sk+1 (66)

where Un = {~sk : ‖~sk − ~sn‖ ≤ ε}. In other words, the mean of the immediate futures of

the ε-neighbours of ~sn. Ragwitz and Kantz in [17] argue that locally constant predictor

is a predictor based on Markov transition probability assumption p(sn+1|sn, sn−τ , . . . , sτ ) =

p(sn+1|sn, sn−τ , . . . , sn−(m−1)τ ). To get the transition the probabilities p(sn+1|~sn), a lo-

cally constant approximation is used in the form of p(sk+1|~sk) ≈ p̂(sn+1|~sn) ∀ ~sk ∈ Un.

The justification of locally constant predictor follows then from the idea that if we use

the mean square error of predictions e2 =
∑N

i=1(si+1 − ŝi+1)
2 then the best estimator

of sn+1 is

ŝn+1 =

∫

~sk∈Un

sk+1p(sk+1|~sn)dsk+1 (67)

Thus we take those time delay embedding vector parameters as optimal which minimize

the locally constant prediction error i.e.

(m, τ ) = arg min
m∈Z,τ∈Z

∥
∥
∥~s − ~̂s

∥
∥
∥ . (68)

2.3.7 Transfer entropy significance testing

One of the problems that plague all transfer entropy estimators is bias. Either system-

atic errors or statistical errors are both properties of estimators that has to be dealt

with. If we observe non-zero value of transfer entropy it can be due to bias or variance

and the transfer entropy estimator (65) is no exception. Since Kraskov, Stögbauer,
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Grassberger method is non-parametric one of the suggested statistical testing options

is to use a permutation test [14] [13].

We are going to test the null hypothesis that there is no relationship between the

source and target variables. First we have to come with surrogate source variable under

to assumption that the null hypothesis is true. One way to do it is to by permuting y
(l)
t−1

in the joint probability space {xt,x
(k)
t−1,y

(l)
t−1} thus destroying any predictive dependence

of Y to X, and computing TYsur→X of the surrogate source variable Ysur. Repeating

this procedure multiple times we can compute one-sided p-value of the test by the

following equation:

P (TYsur→X ≥ TY →X) =
∑

Ysur :TYsur→X≥TY →X

P (Ysur). (69)

If the p-value is less 0.05 we reject the null hypothesis at the 5% significance level.
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3 Experiments

Our aim was to explore the information flow within the ESN reservoir and its relation-

ship to specified task performance. For this reason a specific ESN model had to be

chosen. This meant fixing the hyperparameters of the model. At first we wanted to

extend the work done by Boedecker et. al. [1].

3.1 Experimental setup

For comparability reasons and consistence of results we choose the same ESN model

and also two benchmark tasks used by Boedecker et. al. [1]. The benchmark tasks we

used is memory capacity task, and one step ahead prediction of one stochastic and two

deterministic processes.

3.1.1 ESN setup

We used ESNs with N = 100 reservoir units. A single input neuron and Q output

neurons depending on the task. 120 output neurons for the memory capacity task and

1 output neuron for the prediction tasks. We didn’t use a bias member in the input and

output layers, as well as no direct input–output connections. The leaking rate in (7)

was set to α = 0. The input weight matrix was initialized from uniform distribution

with parameters U(−0.1; 0.1). The elements of the reservoir matrix W were drawn

from normal distribution with parameters N (0; 0.5). Concerning the learning process,

we set β = 0 in the Tikhonov regularization in expression (11), effectively getting direct

pseudoinverse computation of the readout matrix Wout. We discarded the first 100

samples of the reservoir neuron activations in order to get the network running and to

get rid of the transients, and 1000 samples of the reservoir neuron activations along

with desired outputs were used to set the readout weights. Next 2000 samples from

the network output were used to test the networks performance.

3.1.2 Benchmark tasks

In our experiments we used four standard benchmark tasks that are used by the reser-

voir computing community.

1. Memory capacity (MC)
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In order to measure the networks ability to recall past input, a sequence of in-

dependent identically distributed real numbers drawn from uniform distribution

on the closed interval [−1; 1] was used as the driving signal.

Figure 1: Input used in memory capacity task testing

2. NARMA

We used 30-th order NARMA time series for one time step ahead prediction. The

NARMA model was given by the following formula:

u(t + 1) = 0.2 u(t) + 0.004 u(t)
29∑

i=0

u(t − i) + 1.5 q(t − 29)q(t) + 0.001 (70)

were ∀ t : q(t) ∼ U(0; 0.5).

Figure 2: Input used in NARMA prediction task testing.

3. Mackey-Glass system (M–G)
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Another standard benchmark task we used is the one time step ahead predic-

tion of the Mackey-Glass system. The system is given by time–delay differential

equation
du

dt
= 0.2

u17

1 + (u17)10
− 0.1u (71)

were u17 is the value of u at time t − 17.

Figure 3: Input used in M–G prediction task testing.

4. Lorenz system

The last task was the one step ahead prediction of the x-coordinate of the Lorenz

system given by the following ordinary differential equations:

dx

dt
= 10(y − x) (72)

dy

dt
= x(28 − z) − y (73)

dz

dt
= xy −

8

3
z. (74)

Regarding the assessment of performance, for measuring the memory capacity task

performance we used measures introduced in section 2.2.5 and in the cases of prediction

tasks we used the normalized root mean square error computed as:

NRMSE =

√
〈(ŷ(t) − y(t))2 〉t

〈(y(t) − 〈y(t)〉t)2 〉t
(75)

where ŷ(t) denotes the predicted value of the process, y(t) is the true value of the

process and 〈∙〉t denotes the time-average.
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Figure 4: Input used in Lorenz prediction task testing.

3.2 Information measures, performance and stability

In order to explore the relationship between transfer entropy, active information storage

and task performance we followed the idea of Boedecker [1] and computed average TE

and AIS within the ESN reservoir for different stability modes. To assess the stability

of reservoir we computed the maximum Lyapunov exponent introduced in section 2.2.6.

Since the maximum Lyapunov exponent can be manipulated only indirectly, we varied

the variance σ of the distribution from which the elements of the reservoir matrix were

drawn. To get a vide enough spectrum of stability instances we increased σ in such a

way that log σ ∈ [−1.5;−0.25] in 60 steps. For every value of σ (step) we created 5

instances of reservoir matrices. Altogether 130 instances of reservoir matrices and for

every such matrix we measured λ, its performance (MC/NRMSE), TE and AIS.

Concerning the setting of the TE and AIS estimators parameters, ideally we would

determine them using Ragwitz-Kantz criterion introduced in section 2.3.6 but estimat-

ing optimal signal embedding for every neuron for every instance would be computa-

tionally demanding. Thus we set the target signal embedding in the TE computation

and the signal embedding in AIS computation to k = 2 and τk = 1, the source signal

embedding in the TE computation to l = 1 and τl = 1. We didn’t change these set-

tings in the course of simulations. In the same manner we set the number of nearest

neighbour in the k-NN search to 4.
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Figure 5: Average values of TE and AIS within the reservoir, and memory capacity in relation to

the maximum Lyapunov exponent λ in the MC task. Every datum represents one instance of the

reservoir matrix.

3.2.1 MC task

The results in case of MC task are presented in Figure 5. The performance (MC) in this

task peaks just before the phase transition from the stable regime to unstable regime.

Similarly the information measures peak around the critical point λ ≈ 0. MC, TE and

AIS sharply drop to minimal values in the unstable mode (λ > 0). With decreasing λ

in negative range, MC raises and unexpectedly TE falls steadily. AIS does not seem

to change accordingly to the changes in TE and MC.

3.2.2 NARMA task

In case of the NARMA task the results are shown in Figure 6. The behavior of informa-

tion measures and performance (NRMSE) is similar to the MC task. The performance

peaks close to the phase transition (λ ≈ 0), as well as TE and AIS, and falls sharply

after the phase transition into the the unstable regime. Similarly to the MC task, the

performance raises with increasing λ (NRMSE decreases) and also TE in the negative

range. AIS doesn’t seem to change accordingly.

3.2.3 M–G task

The behavior of information measures and performance in case of M–G task, shown in

Figure 7, is quite different from previous tasks. First, the performance does not peak

close to the phase transition, but rather in the more stable region (λ � 0) and second

TE doesn’t seem to change in relation to the performance as in the MC and NARMA
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Figure 6: Average values of TE and AIS within the reservoir, and NRMSE in relation to the maximum

Lyapunov exponent λ in the NARMA prediction task. Every datum represents one instance of the

reservoir matrix.

tasks. On the other hand information measures peak at criticality as in previous cases

and fall sharply in the unstable region but AIS stays high for λ > 0.

Figure 7: Average values of TE and AIS within the reservoir, and NRMSE in relation to the maximum

Lyapunov exponent λ in the M–G prediction task. Every datum represents one instance of the reservoir

matrix.

3.2.4 Lorenz task

The results from Lorenz task exploration (Figure 8) resemble the results from the M–G

task in that the performance peaks in stable stable regime far from the critical point.

TE and AIS also peak further from the critical point than in previous cases. The

decrease of performance and information measures from the stable to unstable regime

is more gradual than in previous cases indicating that our ESN model is less sensitive

to the stability of the reservoir in case of Lorenz driving signal. There seems to be
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a relationship between TE and performance similar to the MC and NARMA in the

stable mode.

Figure 8: Average values of TE and AIS within the reservoir, and NRMSE in relation to the maximum

Lyapunov exponent λ in the Lorenz prediction task. Every datum represents one instance of the

reservoir matrix.

3.2.5 Conclusion

From the observed results it seems there is an unexpected relationship between the

information measures and performance for λ in stable region. To look at this relation-

ship we computed various correlation coefficients between corresponding information

measure and performance. As the transition from the stable to the unstable mode is

gradual and task dependent, we looked at the instances for which λ is in stable mode,

and such that it maximazes the Pearson correlation coefficient. Thus we gradually

decreased the size of the interval beginning with λ = 0 and for each interval com-

puted correlation coefficients. The results for maximal obtained Pearson correlation

coefficients are presented in Table 1 for TE and Table 2 for AIS.

We want to emphasize that the use of the correlation coefficents in such a way is

not correct. First the data we compute the correlations do not satisfy the assumptions

necessary for statistical testing, and second the idea of looking for maximal correlations

by search is questionable. Nevertheless we think it is a good way to explore for potential

relationships within the stable region.

In case of TE, our explorations imply that there seems to be negative relationship

between information flow and task performance at least for MC, NARMA and Lorenz

tasks. That means the higher the performance the lower the overall information flow
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within the reservoir layer.

Table 1: Values of correlation coefficients between TE and performance (MC or NRMSE depending

on task) in stable regimes.

MC: λ ∈ [-0.6,-0.0064) NARMA: λ ∈ [-0.6,-0.0017) M-G: λ ∈ [-0.6,-0.0013) Lorenz: λ ∈ [-0.9,-0.0233)

Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Pearson -0.920 1.9e-11 0.657 1.0e-05 0.706 9.3e-07 0.664 4.6e-05

Spearman -0.897 6.6e-13 0.657 1.0e-05 0.240 0.17 0.779 2.4e-07

Kendall -0.743 8.3e-09 0.444 1.0e-04 0.159 0.17 0.587 3.5e-06

In case of AIS, the selfpredictability of the units in the reservoir seem to depend

on the task. For MC task there seems to be a negative relationship between AIS and

performance, no relationship in NARMA and M–G tasks, and positive dependence in

Lorenz task (note that higher performance means lower NRMSE in NARMA, M–G

and Lorenz tasks, and higher MC in MC task). As though the network benefits more

from the selfpredictability of each neuron than information exchange between different

units in the Lorenz task.

Table 2: Values of correlation coefficients between AIS and performance (MC or NRMSE depending

on task) in stable regimes.

MC: λ ∈ [-0.6,-0.0064) NARMA: λ ∈ [-0.6,-0.0017) M-G: λ ∈ [-0.6,-0.0013) Lorenz: λ ∈ [-0.9,-0.0233)

Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Pearson correlation -0.737 3.4e-06 0.01 0.954 -0.920 2.8e-16 -0.911 1.2e-12

Spearman correlation -0.708 1.2e-05 0.452 0.005 0.051 0.763 -0.866 3.2e-10

Kendall correlation -0.513 6.9e-05 0.3 0.009 0.038 0.734 -0.690 4.9e-08

Altogether the results indicate a surprising inverse relationship between TE and

performance. To get a more precise answer to this hypothesis its necessary to design

the experiment more thoroughly.

3.3 Reservoir neuron signal embedding

In the next step we wanted to get a closer look on information measures at different

stability settings but first the values of KSG estimators parameters had to be chosen.

As was already mentioned in section 3.2, ideally we would determine the embedding
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vector and time delay for every single neuron signal and use it in the TE and AIS esti-

mation. This approach would computationally very demanding and the whole reservoir

information measure estimation would be overparameterized. Thus we simplified the

this task and set the TE and AIS parameters to one value for every neuron in single

reservoir.

To find this value we used the Ragwitz-Kantz criterion (section 2.3.6) to determine

the embedding vectors for every neuron in 100 instances of reservoir matrices for every

task and every scaling. Then the most frequent parameter observation in a speciffic task

and scaling was taken as the optimal value in subsequent TE and AIS computations.

The search space in the Ragwitz-Kantz method was k = 1, . . . , 6 for the the embedding

vector length and τ = 1, . . . , 6 for the time delay.

The ESNs were initialized according to section 3.1.1. and subsequently the reservoir

matrix was scaled in order to get a speciffic spectral radius (section 2.2.3) according to

desired stability properties i.e. unscaled for unstable, ρ = 0.6 for stable and ρ = 0.95

close to criticality. We also added two more scalings of the reservoir matrix according

to orthogonality/orthonormality introduced in section 2.2.7. We used the spectral

radius scaling ρ = 0.95 and then ran 30 iterations of the OG method (equation (21))

with the learning rate η = 0.03. We did the same procedure with the ON method

(equation (22)), except that the learning rate was set to η = 0.07∗(0.9)j , j = 0, . . . , 30.

Altogether we got 5 different scalings.

3.3.1 MC task

The results for the MC task are presented Figure 9. The embedding length and delay

exploration have single maxima for all scalings. The maxima seem unsensitive to

scalings of the reservoir matrix. Also the most frequent choices of embedding vectors

are for the largest length allowed in the exploration, except for the scaling ρ = 0.6.

If we consider the driving signal in the MC task then it is possible that the single

neuron signals can not be approximated by a Markov process and thus k → ∞. Or

the maximal allowed length in the exploration was to low.
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Figure 9: (k, τ ) pairs for various scalings of the reservoir in MC task. Each cell denotes the number

of occurrences when the locally constant predictor with the setting (k, τ ) minimized the prediction

error in a single neuron signal.

3.3.2 NARMA task

In the case of NARMA task the results, shown in Figure 10, are almost identical to the

result of the MC task. The maxima for every scaling are the same as in the case of MC

task. These similarities can be regarded as an indication that the neuron activation

signals in the MC and NARMA tasks have some identical properties. For example the

order of the underlying Markov process.

Figure 10: (k, τ ) pairs for various scalings of the reservoir in NARMA task. Each cell denotes

the number of occurrences when the locally constant predictor with the setting (k, τ ) minimized the

prediction error in the single neuron signal.

3.3.3 M–G task

The results of the M–G task exploration are presented in Figure 11. In this case there

are also single maxima but for the scaled instances there is a possibility of a second

node for τ larger then 6. The scalings of the reservoir matrix have a noticeable influence

on the embedding vector choice, very different from the MC and NARMA tasks. This

also implies that the scaled neuron signals for this task could be approximated by a

Markov process of order 2.
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Figure 11: (k, τ ) pairs for various scalings of the reservoir in M–G task. Each cell denotes the number

of occurrences when the locally constant predictor with the setting (k, τ ) minimized the prediction

error in the single neuron signal.

3.3.4 Lorenz task

The results for the Lorenz task (Figure 12) are similar to the M–G task in that they

have singular maxima nodes and the length of the most frequent embedding vector is

2. The difference is in delay τ and that the distribution of winning (k, τ ) pairs is more

spread than in previous cases. The higher delay τ could be explained by a small 4t

time step when the training and validation dataset was created.

Figure 12: (k, τ ) pairs for various scalings of the reservoir in Lorenz task. Each cell denotes the

number of occurrences when the locally constant predictor with the setting (k, τ ) minimized the

prediction error in the single neuron signal.

3.3.5 Conclusion

As a side product of the search for optimal values of the KSG estimators parameters

which are presented in Table 3, we did get an insight into the complexity of reservoir

neuron activation signals. If we consider the order of an underlying Markov process

as a measure of how complex an observed time series is then the reservoir activations

in the MC and NARMA tasks have the same complexity, and the same goes for M–G

and Lorenz tasks. This was expected since the former are driven by a stochastic signal

and the later by a deterministic signal.
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Table 3: Most frequent (k, τ ) pairs for each task and scaling.

HHHHHHHHH
Scaling

Task MC NARMA M–G Lorenz

k τ k τ k τ k τ

init 6 1 6 1 6 1 6 1

ρ = 0.6 4 1 4 1 2 1 2 3

ρ = 0.95 6 1 6 1 2 1 2 2

OG 6 1 6 1 2 1 2 2

ON 6 1 6 1 2 1 2 3

3.4 Analysis of information transfer in the reservoir

In the final step we wanted to have a closer look at the behaviour of the reservoir in

different settings (introduced in section 3.1.1) regarding the information transfer. We

generated one instance of the input weight vector win and one instances of the recurrent

weight matrix W (the way defined in section 3.1.1), and used them in all subsequent

scalings and tasks. In the computations of the information measures in every task and

scaling, we used the most frequent observations of the pair (k, τ ) listed in table 3 as

parameters of the target variable in the TE estimator and as global parameters in the

AIS estimator. The source variable parameters in the TE estimator were set to (1, 1),

as we wanted to observe only how the most recent past of the source unit influences

the target unit.

In order to quantify not only the global changes of information transfer due to

scalings but also the changes in distribution of TE (when we consider the values of TE

as a random variable), we computed relative entropy (Kullbeck–Liebler divergence) of

TE, because the relative entropy is according to section 2.3.2 a more suitable measure of

disorder (uncertainty) in a system when considering a continuous random variable then

differential entropy. For the probability distribution m(x) in equation 39, we choose the

uniform distribution as it maximizes the differential entropy when no prior knowledge

about distribution is available (It can be proved that the uniform distribution has

the maximum differential entropy among all continuous distributions supported in the

closed interval [a, b]. The proof follows from the non-negativeness property of Kullbeck-

Liebler divergence). We choose the support of the uniform distribution to be the closed

interval [0; maxTE] where maxTE is the maximum observed value of TE in a specific
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Figure 13: The matrices (N×N) of TE values in the reservoir for different scalings in MC task.

Rows of the matrix denote source units and columns denote target units. Dark color represents high

values, light color represents low values.

task and scaling. The estimator of relative entropy takes the following form:

∣
∣
∣H(TE

(k,l)
RES)

∣
∣
∣ = D̂KL(TE

(k,l)
RES ‖U(0; max TE

(k,l)
RES)) = ln(max TE

(k,l)
RES)−ĤKL(TE

(k,l)
RES) (76)

where ln(max TE
(k,l)
RES) is the exact differential entropy of the uniform distribution with

the support in [0; max TE
(k,l)
RES], ĤKL(∙) is the Kozachenko-Leonenko entropy estima-

tor(introduced in section 2.3.5) and TE
(l,k)
RES is the distribution of the estimates of trans-

fer entropies in the reservoir.

3.4.1 MC task

The visualisation of TE in reservoir for 5 different scalings in case of MC task is

presented in figure 13. There is a noticeable change in the amount of TE by the

transition from unscaled to scaled reservoir. Unscaled represents unstable regime, and

scalings to spectral radius ρ = 0.6 and ρ = 0.95 represent stable regime and close

to criticality respectively. Corresponding Lyapunov exponents λ values are listed in

table 4. In case of ρ = 0.6 there are a few target neurons that have high values of TE

(dark columns).The transition to criticality leads to the performance rising and global

value of TE decreasing, as was observed in section 3.2.1. Concerning the OG and ON

scalings there is an improved performance in case of OG and similar decrease of TE.

Figure 14 plots histograms of distribution of TE in corresponding reservoir scaling.

We can observer the most visible changes from unscaled, to ρ = 0.6 and to ρ = 0.95.

The quantification of the level of disorder of TE within the maximum value in every

scaling is represented in table 4 by the relative entropy of TE. The unscaled case

has the lowest value of relative entropy which means its distribution is closest to the

distribution of the uniform distribution. We can interpret this result as the unscaled
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case has the highes level of disorder of TE among all scalings. With the transition to

ρ = 0.6 the level of disorder decreases and further decreases with the close to criticality

scaling. An interesting observation is that the OG scaling has the highest performance

lowest TE and highest relative entropy of TE among the scalings ρ = 0.6, ρ = 0.95,

OG and ON.

Figure 14: Histograms of TE distribution changes due to reservoir scaling in MC task (log scale is

used).

Figure 15 provides the visualisation of the changes in AIS due to scaling for every

unit. The results are consistent with results in section 3.2.1 in that the closer we are

to critical point the higher the AIS value. An interesting observation is that the OG

scaling has a minimal AIS value as well as TE value among the scalings ρ = 0.6,

ρ = 0.95, OG and ON.

Figure 15: AIS values for every unit (N) in various reservoir scalings in MC task.

We also looked at distributions of reservoir activation signals (figure 16) for different

scalings. The values of all the scalings settings except for unscaled case are within the
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Table 4: Quantitative measures for MC task, in case of initialized, scaled and orthogonalized reser-

voirs.

MC task Unscaled ρ = 0.6 ρ = 0.95 OG ON

MC 0.06 17.8 32.8 47.4 33.3

Average TE 0.009 0.092 0.048 0.042 0.062

Average AIS 0.027 0.146 0.151 0.12 0.148

Rel. entr. of TE 1.010 1.323 1.354 1.191 1.267

LE 0.53 −0.52 −0.06 −0.09 −0.16

range where the activation function can be approximated by a linear function what

means that the reservoir does not benefit from the nonlinearities of tanh activation

function.

Figure 16: Reservoir neuron activation distributions for various reservoir scalings in MC task (log

scale is used).

3.4.2 NARMA task

The results in NARMA task are very similar to the results in MC task. There is a

visible change in the structure of TE matrices (Figure 17) with the transition from

the unscaled to scaled cases. Also we can observe similar high TE target units(dark

columns) for ρ = 0.6 and for ρ = 0.95, OG and ON cases and more spread distribution

of TE in the reservoir. The Lyapunov exponent λ in all scalings is almost identical to

the MC task.

The probability distribution of TE in the reservoir presented in Figure 17 look

similar to the MC task as well. The biggest differences are between unscaled, scaled
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Figure 17: The matrices (N×N) of TE values in the reservoir for different scalings in NARMA task.

Rows of the matrix denote source units and columns denote target units. Dark color represents high

values, light color represents low values.

to ρ = 0.95, OG and ON, and ρ = 0.6 scalings. These differences are supported by

the statistical testing we have performed on the mean square errors (MSE) in every

scaling using Kruskal–Wallis test. The differences in MSEs in the scalings ρ = 0.95,

OG and ON are not statistically significant. Nevertheless from table 5 we get the same

observation as in the MC task. In case of OG scaling the the performance is maximal,

TE is minimal and relative entropy of TE is maximal among the scalings ρ = 0.6,

ρ = 0.95, OG and ON.

Figure 18: Histograms of TE distribution changes due to reservoir scaling in NARMA task (log scale

is used).

The values of AIS for every unit in reservoir for every tested scaling shown in

Figure 19, shows again qualitative similarities of MC and NARMA tasks. There are

visible changes when comparing unscaled and scaled cases. In this case the lowest mean

value of AIS among the scalings ρ = 0.6, ρ = 0.95, OG and ON is observed in case of

ρ = 0.95.

Concerning the distribution of reservoir unit activations (Figure 20), it is even more
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Figure 19: AIS values for every unit (N) in various reservoir scalings in NARMA task.

Table 5: Quantitative measures for NARMA task, in case of initialized, scaled and orthogonalized

reservoirs.

NARMA Unscaled ρ = 0.6 ρ = 0.95 OG ON

NRMSE 2.07 0.98 0.83 0.82 0.84

Average TE 0.0093 0.088 0.053 0.044 0.067

Average AIS 0.025 0.269 0.191 0.232 0.257

Rel. entr. of TE 1.175 1.642 1.271 1.183 1.194

LE 0.52 −0.53 −0.062 −0.089 −0.16

focused when compared to the MC task. This means that the reservoir does not benefit

from the nonlinearities of the tanh activation function for the scalings ρ = 0.6, ρ = 0.95,

OG and ON, and could be replaced by a linear function.

Figure 20: Reservoir neuron activation distributions for various reservoir scalings in NARMA task

(log scale is used).
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Figure 21: The matrices (N×N) of TE values in the reservoir for different scalings in M–G task.

Rows of the matrix denote source units and columns denote target units.

3.4.3 M–G task

In the case of M–G task there are noticeable differences in quality and quantity with

the transition from scaled to unscaled when compared to the previous tasks. This

supports our findings from sections 3.2 and 3.3. There is only negligible global value

of TE in the unscaled reservoir, but the minimal value among scaled reservoirs is for

ρ = 0.6 as opposed to OG in MC task and ρ = 0.95 in NARMA task. The same goes

for performance. We observe the best performance for the scaling ρ = 0.6, which is in

the stable region of the Lyapunov exponent spectrum. We have performed a Kruskal–

Walis test for differences in MSE among 5 scalings and found statistically significant

diferences in unscaled, ρ = 0.6 and ρ = 0.95. For the scalings ρ = 0.95, OG, ON there

is no significant difference.

The distribution of TE in various scalings (Figure 22) shows some interesting sim-

ilarities and differences when compared to MC and NARMA tasks. The maximum

values of TE are lower than in MC and NARMA tasks (max TE ≈ 0.6 vs. max TE

≈ 1.1 respectively) but the distributions of unscaled and ρ = 0.6 look visually similar

to MC and NARMA cases. Also quantitatively, the relative entropy of TE (table 6)

how smaller values compared to MC and NARMA tasks, meaning that the distribution

of TE is more closer to uniform distribution. This can be observed visually in the TE

matrices (Figure 21). Similarly to previous tasks the scaling with the best performance

(ρ = 0.6) has the lowest value od mean TE and lowest value of relative entropy among

the scalings ρ = 0.6, ρ = 0.95, OG, ON.

The values of AIS for individual units in various scaling are presented in Figure 23.

Similarly to previous tasks, there is a noticeable shift from unscaled to scaled reservoirs

but in M–G task the values of AIS are much higher (max AIS ≈ 3.4) than in MC and

NARMA tasks (max AIS ≈ 0.4 and max AIS ≈ 0.7). The best performing scaling

40



Figure 22: Histograms of TE distribution changes due to reservoir scalings in M–G task (log scale

is used).

(ρ = 0.6) has the highest mean value of AIS among the scalings ρ = 0.6,ρ = 0.95,

OG and ON. This observation extends our findings from section 3.2. Compared to the

MC and NARMA tasks, the best performing scaling had the lowest AIS among scaled

instances.

Figure 23: AIS values for every unit (N) in various reservoir scalings in M–G task.

The reservoir activations are similarly distributed as in previous cases (Figure 24).

That is the activations in scaled reservoirs are very focused around zero meaning the

operate in linear mode and do not benefit from the nonlinearities of tanh activation

function.
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Figure 24: Reservoir neuron activation distributions for various reservoir scalings in M–G task (log

scale is used).

Table 6: Quantitative measures for M–G task, in case of initialized, scaled and orthogonalized

reservoirs.

Mackey–Glass Unscaled ρ = 0.6 ρ = 0.95 OG ON

NRMSE 1.12 0.00025 0.00026 0.0003 0.00026

Average TE 0.0093 0.15 0.25 0.26 0.24

Average AIS 0.025 3.204 3.073 3.142 3.115

Rel. entr. of TE 1.166 0.315 0.391 0.588 0.328

LE 0.53 −0.52 −0.062 −0.09 −0.16

3.4.4 Lorenz task

The results in the Lorenz task confirm our findings in section 3.3 that there are two

complexity classes in tested tasks. MC and NARMA, and M–G and Lorenz. The

result regarding quantitative and qualitative properties of TE in Lorenz task are very

much like the results in M–G task. The structure of TE matrices for various scalings

(Figure 25) resembles the TE matrices in M–G task, just with overall lower TE values.

The best performance is observed in the ρ = 0.6 scaling just as in M–G task, which

means better performance in stable regimes than closer to criticality. The Kruskall-

Walis test showed statistically significant differences between all scalings.

The distributions of various scalings in Lorenz task presented in Figure 25 show

generally lower values of TE and also mean TE when compared to M–G task. Also the

structure of the distribution has some dissimilarities for scalings ρ = 0.6, ρ = 0.95, OG

and ON. Regarding the relative entropy of TE shown in Table 7, in case of the scaling

42



Figure 25: The matrices (N×N) of TE values in the reservoir for different scalings in Lorenz task.

Rows of the matrix denote source units and columns denote target units.

which has the largest performance (ρ = 0.6) has also the largest relative entropy of TE

among the scalings ρ = 0.6, ρ = 0.95, OG and ON. This observation is a difference

to NARMA and M–G prediction tasks where the scaling with the biggest performance

has the smallest relative entropy of TE.

Figure 26: Histograms of TE distribution changes due to reservoir scaling in Lorenz task (log scale

is used).

AIS global and individual unit values, shown in Figure 27, are again higher when

compared to MC and NARMA tasks. Overall the plot is very similar to the case of

M–G task and also the scaling with the best performance (ρ = 0.6) has the largest

mean value of AIS among alls scalings.

The values of reservoir unit activations observed in Figure 28 for all scalings cover

the whole range of the tanh activation fucntion. This is a change when comparing to

previous tasks. Still the most frequent activation values are around zero. This could

be explained by the range of the driving signal and that we used the same input matrix

win which is not an optimal input matrix for the Lorenz task but a compromise for

comparability reasons.
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Figure 27: AIS values for every unit (N) in various reservoir scalings in Lorenz task.

Figure 28: Reservoir neuron activation distributions for various reservoir scalings in Lorenz task (log

scale is used).

Table 7: Quantitative measures for Lorenz task, in case of initialized, scaled and orthogonalized

reservoirs.

Lorenz Unscaled ρ = 0.6 ρ = 0.95 OG ON

NRMSE 0.56 0.00012 0.0013 0.0034 0.00097

Average TE 0.009 0.087 0.16 0.15 0.12

Average AIS 0.025 3.157 2.971 2.932 3.002

Rel. entr. of TE 1.148 0.694 0.254 0.221 0.262

LE 0.52 −0.74 −0.28 −0.35 −0.32

3.4.5 Conclusion

The results presented in this section confirm results in sections 3.2 and 3.3, that there

are two complexity classes in relation to driving signals. This should come as no
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surprise since the driving signals in MC and NARMA tasks are stochastic, and in M–G

and Lorenz are deterministic in nature. Performance wise M–G and Lorenz tasks do

not benefit from criticality, as is the case of MC and NARMA tasks, but operate better

in stable regimes.

When comparing among task classes with complexity in mind, there is a general

rise in performance, TE and AIS, and decline in relative entropy of TE in reservoir

between NARMA and M–G/Lorenz tasks. On the other hand when comparing scalings

within each task, the relationship is not so clear. In the stochastic complexity class

(MC/NARMA) we observe rise of performance, and decline of TE and AIS. In the

deterministic complexity class (M–G/Lorenz), rise in performance and AIS, decline

in TE. These results support the findings in section 3.2 regarding the behavior of

information measures in relation to stability in stable region. Additional information

with regard to distribution of TE in the reservoir, shows that lower values of relative

entropy of TE are accompanied with better performance when comparing scalings in

MC, NARMA and M–G tasks. This is not the case in Lorenz task.

These results point to the hypothesis that there might be a relationship between

performance, global TE and distribution of TE in the reservoir. More precisely that

not only the amount of information transfer between units is important but also that it

should be more uniformly distributed in the reservoir. These claims should be through-

outly investigated.
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4 Discussion
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