
Contents

1 Introduction 3

2 Theoretical background 4

2.1 General notion of artificial neural networks 4

2.1.1 Neural network as an approximation 5

2.1.2 Classes of neural networks . 6

2.2 Echo state network . 7

2.2.1 Architecture . 7

2.2.2 Echo state property . 8

2.2.3 Hyperparameters . 8

2.2.4 Learning process . 10

2.2.5 Short term memory capacity . 10

2.2.6 Lyapunov characteristic exponent 11

2.2.7 Reservoir orthogonalization and orthonormalization 12

2.3 Information measures . 13

2.3.1 Introduction to information theory 13

2.3.2 Limiting density of discrete points 15

2.3.3 Transfer entropy and active information storage 16

2.3.4 Transfer entropy and Granger causality 17

2.3.5 Estimation of transfer entropy and active information storage . 18

2.3.6 Estimator parameter determination 21

2.3.7 Transfer entropy significance testing 23

3 Experiments 24

3.1 Experimental setup . 24

1

3.1.1 Benchmark tasks . 25

3.2 Information measures, performance and stability 27

3.2.1 MC task . 28

3.2.2 NARMA task . 28

3.2.3 M–G task . 29

3.2.4 Lorenz task . 30

3.2.5 Conclusion . 30

3.3 Reservoir neuron signal embedding . 32

3.3.1 MC task . 33

3.3.2 NARMA task . 34

3.3.3 M–G task . 34

3.3.4 Lorenz task . 35

3.3.5 Conclusion . 35

3.4 Analysis of information transfer in the reservoir 36

3.4.1 MC task . 37

3.4.2 NARMA task . 39

3.4.3 M–G task . 41

3.4.4 Lorenz task . 44

3.4.5 Conclusion . 46

4 Discussion 48

A Software 51

2

Chapter 1

Introduction

The thesis is organized as follows:

• in section 2 we introduce the basic concept of an artificial neural network and

the echo state network architecture, together withz. Afterwards we continue with

with basic information theory and a more indepth overview of information mea-

sures used in this paper, namely transfer entropy and active information storage.

We also cover some problems and solutions associated with the estimation of

these measures.

3

Chapter 2

Theoretical background

2.1 General notion of artificial neural networks

Artificial neural networks are getting more and more attention over the last decades

as advances in raw computational power make it possible to implement these com-

putationally heavy algorithms as well as recent achievements in better than human

performance on certain tasks. In the next paragraphs we provide basic theoretical

concepts behind artificial neural networks.

Neural network model

Haykin [8] defines a neural network in the following way:

Definition 1 A neural network is a massively parallel distributed processor made up of

simple processing units, which has a natural property for storing experiential knowledge

and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process.

2. Interneuron connection strengths, known as synaptic weights, are used to store

acquired knowledge.

4

The basic information-processing unit is called a neuron. In mathematical terms

the neuron k of a system consisting of N neurons, can be written as a pair of equations:

uk =
m∑

j=1

wkjxj (2.1)

yk = ϕ(uk + bk) (2.2)

where x1, x2, . . . , xm are the input signals, wk1, wk2, . . . , wkm are synaptic weights, uk

is called linear combiner output due to the input signals, bk is called bias, ϕ(∙) is the

activation function, and yk is the output signal of the neuron.

There are two basic activation functions:

1. Threshold function

ϕ(v) =

1 if v ≥ 0

0 if v < 0

(2.3)

2. Sigmoid function

• logistic function

ϕ(v) =
1

1 + e−av
(2.4)

• hyperbolic tangent function

ϕ(v) = tanh(v). (2.5)

2.1.1 Neural network as an approximation

One way to look at artificial neural networks is as a mapping

f : X → Y

where X is the set of inputs and Y is the set of outputs. In the language of statistics

we are dealing with nonparametric statistical inference. This view is strongly sup-

ported by an important theoretical result proved by Hornik [9], namely the universal

approximation theorem.

Theorem 1 Let

N
(n)
k (ϕ) =

{

y : Rk → R | y(x) =
n∑

i=1

βiϕ(
m∑

j=1

wijxj − bi)

}

5

denote a set of all functions implemented by a network with n hidden units and one

output unit. If ϕ is continuous, bounded and nonconstant, then N(n)
k is dense in C(X)

for all compact subsets X of Rk (C(X) is the space of all continuous functions on X).

Here we can observe some similarities to the Stone-Weierstrass theorem (it implies that

the set of all polynomials of X is dense in C(X)). The process of estimation of the

synaptical weights wij for i = 1, . . . , n and j = 1, . . . ,m is called learning.

2.1.2 Classes of neural networks

The neurons of a neural network can be organized into many different structures. Many

have been already developed and successfully applied to different tasks. The structure

is called network architecture and in general there are two fundamentally different

classes of network architectures:

1. Feedforward networks

The structure of neurons is organized in layers. There is an input layer, hidden

layer and output layer. The synaptical weights are only between neurons of

two concurrent layers and only in one direction. In other words the output

signals from one layer serve as input signals to the neurons in the second layer.

We say that the network is fully connected if every unit in each layer of the

network is connected to every unit in the next layer. Otherwise we say that the

network is partially connected. In general there can be multiple hidden layers.

Theorem 1 deals with a feedforward network with a single hidden layer. The

standard learning algorithm for feedforward networks is called backpropagation

of error. Basically it is a form of gradient based optimisation method.

2. Recurrent networks

A recurrent neural network that has at least one feedback loop. Feedback as is

used in dynamical systems, that is when the output influences the input of an

element of the system. In the setting of a neural network let us consider linear

operators A and B, and an input-output relationship between two neurons

yk(n) = A[x
′

j(n)]

6

and

x
′

j(n) = xj(n) + B[yk(n)].

Modifying these equations we get

yk(n) =
A

1 − AB
[xj(n)].

We call the term A
1−AB

a closed-loop operator of the system, and AB the open-

loop operator. Generally the existence of feedback loops in the neural network

makes the process of learning very difficult.

2.2 Echo state network

Echo state networks (ESNs) belong to the class of recurrent neural networks. This

type of architecture was first proposed by Jaeger [10]. In the next paragraphs we will

provide the structure and some properties of an echo state network.

2.2.1 Architecture

The architecture consists of an input layer, a reservoir and an output layer. The

reservoir is a fully connected recurrent hidden layer. The update equations are given

by

x̄(t) = tanh(Win[1;u(t)] + Wx(t − 1)) (2.6)

x(t) = (1 − α)x(t − 1) + αx̄(t) (2.7)

where x(t) ∈ RNx is a vector of reservoir neuron activations and x̄(t) ∈ RNx is its

update at time step t, tanh(∙) is the activation function, Win ∈ RNx×(1+Nu) is the

input weight matrix, W ∈ RNx×Nx is the recurrent weight matrix, and α ∈ (0, 1] is the

leaking rate. The output is defined as

y(t) = Wout[1;u(t);x(t)] (2.8)

where y(t) ∈ RNy is network output and Wout ∈ RNy×(1+Nu+Nx) is the output weight

matrix.

Lukoševičius [14] writes that the reservoir serves two functions:

7

1. as a high-dimensional nonlinear expansion, similarly to kernel methods, where

input in input space is not linearly separable and by projecting in a higher di-

mensional space it may become linearly separable.

2. as a dynamical short-term memory.

2.2.2 Echo state property

Jaeger [10] defined the term echo state property, which is a necessary condition for

the ESN to work in order to asymptotically wash out any information from initial

conditions. The definition for a network with no output feedback is as follows:

Definition 2 Assume that input is drawn from a compact input space U and network

states lie in a compact set A. Assume that the network has no output feedback connec-

tions and let T be a network state update operator. Then, the network has echo states, if

the network state x(n) is uniquely determined by any left-infinite input sequence ū−∞.

More precisely, this means that for every input sequence . . . ,u(n − 1),u(n) ∈ U−N ,

for all state sequences . . . ,x(n − 1),x(n) and x
′
(n − 1),x

′
(n) ∈ A−N, where x(i) =

T(x(i − 1),u(i)) and x
′
(i) = T(x

′
(i − 1),u(i)), it holds that x(n) = x

′
(n).

2.2.3 Hyperparameters

The specific instance of an ESN is defined by a set of parameters, namely (Win,W, α).

In the next paragraphs we will outline the principles for choosing these parameters.

We are going to follow the recommendations according to Lukoševičius [14].

1. Reservoir matrix W

• Reservoir size - the consensus is that the larger number of neurons in

the reservoir the better, but on the other hand there is danger of over-

parametrization and over-fitting. In general

T ≥ 1 + Nx + Nu

where T is the dataset size, Nx is the number of neurons in the reservoir,

and Nu is the input dimension.

8

• Distribution of reservoir weights - at the initialisation step of the algorithm

the elements of the matrix W are randomly generated and not manipulated

afterwards. The weights are drawn independently from a uniform or normal

distribution symmetrical around zero.

• Spectral radius - as stated in section 2.2.2 the existence of the echo state

property in an ESN is essential for the network to work. Jaeger [10] states the

network has no echo state when the spectral radius of the reservoir matrix

is |λmax(W)| > 1, the admissible state set is [−1, 1]N and if the input set

contains 0. Thus it is standard practice to scale the reservoir matrix W

so that |λmax(W)| < 1. The specific value |λmax(W)| has to determined

experimentally in way that maximizes performance.

2. Input matrix Win

Similarly to the initialization of the reservoir matrix W, the elements of input

matrix Win randomly selected either from uniform or normal symmetrical distri-

bution.

3. Leaking rate α

Assume a dynamical system

ẋ = −x + tanh(Win[1;u] + Wx)

and using a discretization of the system

ẋ ≈
x(t) − x(t − 1)

4t

we get

x(t) = (1 −4t)x(t − 1) + 4t tanh(Win[1;u(t)] + Wx(t − 1)). (2.9)

By comparing equations (2.7) and (2.9) we can regard the leaking rate param-

eter as the size of the discrete time step and scale accordingly. In practice this

parameter has to be determined experimentally.

9

2.2.4 Learning process

As can be seen from previous sections there hasn’t been any training involved yet. The

only training is in finding the output layer weight matrix Wout, precisely solving

Ytarget = WoutX (2.10)

where Ytarget ∈ RNy×T , X ∈ R(1+Nu+Nx)×T and T is the size of the training set. Lukoše-

vičius [14] proposed to use regression with Tikhonov regularization

Wout = YtargetXT(XXT + βI)−1 (2.11)

where β ∈ R is the regularization parameter that has to be determined experimentally.

When β = 0 we get

Wout = YtargetX+ (2.12)

where X+ = XT(XXT)−1 is the right Moore-Penrose inverse.

2.2.5 Short term memory capacity

As has been already stated, due to the feedback loops, echo state networks can be

regarded as a dynamic short-term memory. Jaeger [11] defined a measure to quantify

the reservoir ability to store and recall past input. It is called the short-term memory

capacity:

Definition 3 Let ν(n) ∈ U (where −∞ < n < +∞ and U ∈ R is a compact interval)

be a single-channel stationary input signal. Assume that we have a recurrent neural

network, specified by its internal weight matrix W, its input weight (column) vector

win and are suitable activation functions f , fout. The network receives ν(n) at its input

unit. For a given delay k and an output unit yk with connection weight (row) vector

wout
k we consider the determination coefficient

d[wout
k](ν(n − k), yk(n)) = d

ν(n − k),wout
k

ν(n)

x(n)

 (2.13)

=
cov2(ν(n − k), yk(n))

σ2(ν(n))σ2(yk(n)))

where cov denotes covariance and σ2 variance.

10

1. The k-delay short term memory capacity of the network is defined by

MCk = max
wout

k

d[wout
k](ν(n − k), yk(n)). (2.14)

2. The short term memory capacity of the network is

MC =
∞∑

k=1

MCk. (2.15)

Jaeger [11] also proved a theoretical limit for the short-term memory capacity:

Proposition 1 The memory capacity for recalling i.i.d input by a N-unit recurrent

neural network with linear output units is bounded by N.

2.2.6 Lyapunov characteristic exponent

The reservoir of an echo state network can be looked at as a discrete dynamical system

and the performance of the whole network depends on its stability. A popular measure

of the degree of the instability of a dynamical system is called the maximum Lyapunov

characteristic exponent.

Definition 4 Let

x(t + 1) = f(x(t)) (2.16)

be a discrete time dynamical system and

x
′
(0) = x(0) + δx(0) (2.17)

be the initial conditions a trajectory x
′
(t) obtained by an infinitesimal displacement

from x(0) such that γ0 = ‖δx(0)‖ � 1. Then the maximum Lyapunov characteristic

exponent is

λ = lim
t→∞

1

t
ln

(
γt

γ0

)

< ∞ (2.18)

where γt = ‖x
′
(t) − x(t)‖.

From the approximation

γt ∼ γ0e
λt (2.19)

it can be seen that for λ > 0 the system is sensitive to initial conditions and therefore is

chaotic. For λ < 0 the system is sub-critical. The value λ ≈ 0 is when phase transition

occurs and is often referred to as the edge of criticality or critical point.

11

For numerical computation of λ we implement a popular method according to

Cencini et.al [4].

1. We start with an infinitesimal perturbation γ0 and evolve the system one time

step ahead, thus getting a normalized tangent vector w(1) = x
′
(1)−x(1)

γ0
and setting

α(1) = ‖w(1)‖.

2. Next we rescale w(1) to w(1)
‖w(1)‖ and evolve the system one step ahead again. We

repeat this process and store the amplitudes α(t) = ‖w(t)‖.

3. The maximum Lyapunov exponent is obtained as:

λ = lim
t→∞

1

t

t∑

i=1

ln(α(i)). (2.20)

In the echo state network setting we set the infinitesimal perturbation to every neuron

unit individually and compute λi of the i-th perturbed for every i = 1, . . . , N of the N

unit reservoir. The final estimated is computed as average λ = 〈λi〉.

2.2.7 Reservoir orthogonalization and orthonormalization

We have already mentioned reservoir matrix scaling according to the desired spectral

radius. Another ways to scale the reservoir matrix is in relation to orthogonality. More

precisely to satisfy the condition W>W = I. Farkaš et. al. [5] proposed a gradient

based orthogonalization and orthonormalization methods and have shown that the

theoretical limits in the memory capacity task, proved by Jaeger [11], can be achieved

via these methods.

The update formula in case of the orthogonalization method is

4 wi = −η
4

‖wi‖
(I − w̃iw̃

>
i)(W̃W̃>)w̃i (2.21)

where η is the learning rate and W̃ denotes matrix W with normalized columns using

Frobenius norm.

The update formula for the orthonormalization method is

4 wi = −η 4 (WW>W − W). (2.22)

12

2.3 Information measures

2.3.1 Introduction to information theory

In order to get an insight into transfer entropy and active information storage we

have to define some key information theoretic concepts. We will follow the definitions

according to MacKay [15]. At first we define the Shannon information content and

entropy of a discrete random variable X with the set of outcomes AX .

Definition 5 Shannon information content of an outcome x is defined to be

h(x) = log2

1

P (x)
. (2.23)

The units are called bits.

Definition 6 The entropy of a random variable X is defined to be the average Shannon

information content of an outcome:

H(X) =
∑

x∈AX

P (x) log
1

P (x)
for P (x) 6= 0 (2.24)

= 0 for P (x) = 0

since limθ→0+ θ log 1
θ

= 0.

In later text we are going to use another important information theoretic concept,

namely the realtive entropy or Kullback-Leibler divergence.

Definition 7 The relative entropy or Kullback-Leibler divergence between two proba-

bility distributions P (x) and Q(x) that are defined over the same AX is

DKL(P‖Q) =
∑

x∈AX

P (x)
P (x)

Q(x)
. (2.25)

From the Gibb’s inequality follows one important property of relative entropy. That is

DKL(P‖Q) ≥ 0

with equality only if P = Q.

Next we need to define conditional entropy.

13

Definition 8 The conditional entropy of X given y = bk is the entropy of the proba-

bility distribution P (x | y = bk).

H(X | y = bk) =
∑

x∈AX

P (x | y = bk) log
1

P (x | y = bk)
(2.26)

Definition 9 The conditional entropy of X given Y is average, over y, of the condi-

tional entropy of X given y.

H(X | Y) =
∑

y∈Ay

P (y)

[
∑

x∈AX

P (x | y) log
1

P (x | y)

]

(2.27)

=
∑

x∈AX ,y∈AY

P (x, y) log
1

P (x | y)
.

The interpretation of conditional transfer entropy is that it measures the average un-

certainty that remains about X when Y is known.

Now we can define mutual information and conditional mutual information.

Definition 10 The mutual information between X and Y is

I(X; Y) = H(X) − H(X | Y). (2.28)

Mutual information measures the reduction of uncertainty about X that results from

learning the value of y.

Definition 11 The conditional mutual information between X and Y given z = ck is

the mutual information between the random variables X and Y in the joint ensemble

P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (2.29)

Definition 12 The conditional mutual information between X and Y given z = ck is

the mutual information between the random variables X and Y in the joint ensemble

P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (2.30)

Definition 13 The conditional mutual information between X and Y given Z is the

average over z of the conditional mutual information from Definition 12.

I(X; Y | Z) = H(X | Z) − H(X | Y, Z). (2.31)

14

Entropy and all other measures based on entropy we have just introduced are defined

for a discrete set of probabilities. Shannon [19] analogously defined the entropy of a

continuous distribution with the density distribution function p(x) as

H(X) =

∫ ∞

−∞
p(x) log

1

p(x)
dx. (2.32)

This quantity is sometimes called differential entropy although this is not a measure

of uncertainty of the random variable X as Shannon intended it to be.

Similarly, from the identity

I(X; Y) =
∑

x∈AX ,y∈AY

P (x, y) log
P (x, y)

P (x)P (y)
(2.33)

we can define mutual information between two continuous random variables as:

I(X; Y) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (2.34)

2.3.2 Limiting density of discrete points

As already noted in the previous section, Shannon’s formulation of entropy for contin-

uous variables is not an information measure. First it lacks many properties of discrete

entropy and second it is not a result of any proper derivation. Nevertheless differential

entropy has many theoretical applications.

Jaynes [12] proposed a different approach to defining entropy of a continuous vari-

able. Let xi, i = 1, . . . , n be discrete points such that

lim
n→∞

1

n
(number of points in a < x < b) =

∫ b

a

m(x) dx (2.35)

exists. Then the differences (xi+1 − xi) in the neighbourhood of any particular value

of x will tend to zero so that

lim
n→∞

n(xi+1 − xi) = m(xi)
−1. (2.36)

The discrete probability P (xi) from Definition 6 will transform to

P (xi) = p(xi)(xi+1 − xi). (2.37)

Equivalently from equation (2.36)

P (xi) → p(xi)
1

nm(xi)
. (2.38)

15

Plugging (2.37) and (2.38) into the definition of Shannon entropy (definition 6) we get

H(X) → −
∫

p(x)log

[
p(x)

nm(x)

]

dx. (2.39)

Following this reasoning, Jaynes defined the continuous information measure as:

H(X) = lim
n→∞

[H(X) − log(n)] = −
∫

p(x) log

[
p(x)

m(x)

]

dx. (2.40)

2.3.3 Transfer entropy and active information storage

Let x(t) and y(t) be the realizations of two processes X(t) and Y (t). Paluš [16] pro-

posed, as an approach to measure the directional information rate, to measure condi-

tional mutual information I(y(t); x(t + τ) | x(t)). It is the average amount of informa-

tion contained in the process Y (t) about the process X(t) in its future τ time units

ahead conditioned on X(t), as opposed to the mutual information I(y(t); x(t + τ))

which can contain information about X(t + τ) in X(t). Similarly Shreiber in [18]

defines mutual information rate of two Markov processes {I} and {J} of order k

and l by measuring the deviation from independence given by the Markov property

p(it+1 | i
(k)
t) = p(it+1 | i

(k)
t , j

(l)
t) using conditional Kullback-Leibler divergence in the

following form

DKL(P (It+1 | I
(k)
t , J

(l)
t)‖P (It+1 | I

(k)
t)) =

=
∑

p(it+1, i
(k)
t , j

(l)
t) log

p(it+1 | i
(k)
t , j

(l)
t)

p(it+1 | i
(k)
t)

.

These ideas inspired the current definition of transfer entropy.

Definition 14 Let Xt and Yt be two processes. The transfer entropy from the source

Y with the history length k to the target X with history length l is

T
(k,l)
Y →X = I(Xt ;Y

(l)
t−1 | X

(k)
t−1) (2.41)

where

X
(k)
t−1 = (Xt−1, Xt−1−τk

, Xt−1−2τk
, ..., , Xt−1−(k−1)τk

)

Y
(l)
t−1 = (Yt−1, Yt−1−τl

, Yt−1−2τl
, ..., , Yt−1−(l−1)τl

).

16

From the identity for conditional mutual information

I(X; Y | Z) = H(X) − I(X; Z) − H(X | Y, Z)

it follows that transfer entropy can be expressed as

T
(k,l)
Y →X = H(Xt) − I(Xt | X

(k)
t−1) + H(Xt | Y

(l)
t−1,X

(k)
t−1).

The second term on the right in the expression above has a special significance for us.

Definition 15 The active information storage of the process X with history length k

is

A
(k)
X = I(X

(k)
t−1; Xt) = H(Xt) − H(Xt | X

(k)
t−1). (2.42)

The active information storage measures the amount of information in the past state

of X(k)
t of X about its next value Xt.

2.3.4 Transfer entropy and Granger causality

Transfer entropy is closely related to another concept of dependency, namely Granger

causality. This relationship provides a different interpretation of the concept of transfer

entropy. Let us take a closer look at it.

We take the definition of Granger causality from [3]

Definition 16 Using the notation from Definition 14. Let F (xt|x
(k)
t−1,y

(l)
t−1) be the dis-

tribution function of the target variable Xt conditional on X
(k)
t−1,Y

(l)
t−1 and F (xt|x

(k)
t−1)

be the distribution function of Xt conditional on its own past. Then variable Y is said

to Granger-cause variable X if

F (xt|x
(k)
t−1,y

(l)
y−1) 6= F (xt|x

(k)
t−1). (2.43)

Now, consider two linear regression models

Xt = A1Xt−1 + . . . + AkXt−k + B1Yt−1 + . . . + BlYt−l + εt (2.44)

Xt = A
′

1Xt−1 + . . . + A
′

kXt−k + ε
′

t (2.45)

with model parameters of the models Ai, A
′

i, B
′

j . Geweke in [6] defined the measure of

Granger causality from Y to X in the following way,

F
(k,l)
Y →X = log(|var(ε

′

t)|/|var(εt)|) (2.46)

17

where |∙| denotes the determinant. We can observe that this is actually log-likelihood

ratio test under the null hypothesis

H0 : B1 = ∙ ∙ ∙ = Bl = 0 (2.47)

when the residuals of the both models are gaussian.

From the definitions od Transfer entropy (definition 14) and Granger causality

(definition 16) it can be seen that both transfer entropy and Granger causality are

measures of predictive causality. The similarity is even closer when we consider the

joint process Xt, Yt as multivariate gaussian. Barnett et. al. [1] proved that under

these conditions Granger causality and transfer entropy are equivalent up to factor 2

i.e.

F
(k,l)
Y →X = 2T

(k,l)
Y →X . (2.48)

2.3.5 Estimation of transfer entropy and active information

storage

Estimation of information measures is still an open problem. Currently there are few

available classes of estimators that one can choose from, based on the properties of the

observed data. Transfer entropy is no exception and the best estimator given some

specific criteria is yet to be determined. An overview of transfer entropy estimators

can be found in [3] or [20].

We are going to focus on one specific estimator of the class of estimators based

on k-nearest neighbour search. We chose this estimation method because they are

currently considered data efficient and accurate nonparametric estimation techniques

for continuous random variables.

Kozachenko-Leonenko Shannon entropy estimator

We are going to put the basic idea of behind Kozachenko-Leonenko differential entropy

estimator as was presented in [13].

Let X be a continuous random variable, f(x) be its density and its differential

entropy as defined in (9). Specifically

H(X) =

∫ ∞

−∞
f(x) log

1

f(x)
dx. (2.49)

18

Then the Monte-Carlo estimate of H(X) is

Ĥ(X) =
1

N

N∑

i=1

log
1

f(xi)
. (2.50)

Since we don’t know f(xi) it has to be substituted by an estimate f̂(xi) which we are

going to find using k-nearest neighbours of xi.

Let Pk(ε) be the probability distribution of the distance between xi and its kth

nearest neighbour. Then Pk(ε)dε is the probability that there is one point in the r

distance from xi where r ∈<
[

ε
2
; ε

2
+ dε

2

]
, k − 1 points are at distances less than r and

N−k−1 points are at distances greater than kth nearest neighbour. Using multinomial

distribution formula we get

Pk(ε)dε =
(N − 1)!

1!(k − 1!)(N − k − 1)!

(
dpi(ε)

dε
dε

)

(pi(ε))
k−1(1 − pi(ε))

N−k−1 (2.51)

where pi(ε) is the probability mass of ε ball centered at xi, that is

pi(ε) =

∫

‖ξ−xi‖< ε
2

f(ξ)dξ. (2.52)

It follows from (2.51) and (2.52) that the expectation value log pi(ε) is given by

E(log pi(ε)) =

∫ ∞

0

log pi(ε)Pk(ε)dε (2.53)

= ψ(k) − ψ(N)

where ψ(x) is the digamma function.

If we assume that f(x) is constant in the entire ε ball we can approximate pi(ε) by

pi(ε) ≈ cdε
df(xi), (2.54)

where d is the dimension of x and cd is the volume of the d-dimensional unit ball. For

the maximum norm cd = 1.

Finally taking the logarithm and expectation of (2.54), and combining it with (2.53)

and (2.50) we get Kozachenko-Leonenko entropy estimator

Ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑

i=1

log ε(i), (2.55)

where ε(i) is twice the distance from xi to its kth nearest neighbour.

19

Kraskov–Stögbauer–Grassberger mutual information estimator

Kraskov, Stögbauer and Grassberger [13] came up with a method of using Kozachenko-

Leoneko entropy estimator to estimate mutual information. Using the identity

I(X,Y) = H(X) + H(Y) − H(X,Y) (2.56)

we are going to obtain an estimator Î(X,Y).

First we directly apply Kozachenko-Leonenko entropy estimator to joint random

variable Z = (X,Y) with maximum norm and we get

Ĥ(X,Y) = −ψ(k) + ψ(N) +
dX + dY

N

N∑

i=1

log ε(i) (2.57)

where ε(i) is the ε
2
from zi to its kth nearest neighbour and dZ = dX + dY .

For the estimate of H(X) we take the distance ε(i) from (2.57) as an approximation

of [nx(i) + 1]st nearest neighbour of xi, where nx(i) is the number of points in within

‖xj − xi‖ < ε
2
, and we get

Ĥ(X) = −
1

N

N∑

i=1

ψ(nx(i) + 1) + ψ(N) +
dX

N

N∑

i=1

log ε(i). (2.58)

Analogously for the marginal space Y we get

Ĥ(Y) = −
1

N

N∑

i=1

ψ(ny(i) + 1) + ψ(N) +
dY

N

N∑

i=1

log ε(i). (2.59)

Combining (2.56), (2.57), (2.58) and (2.59) we get the Kraskov, Stögbauer and Grass-

berger (KSG) estimator

I(1)(X,Y) = ψ(k) − 〈ψ(nx + 1) + ψ(ny + 1)〉 + ψ(N) (2.60)

where 〈∙ ∙ ∙ 〉 = 1
N

∑N
i=1(∙ ∙ ∙).

Estimating transfer entropy and active information storage.

Since active information storage of a process is defined in definition 15 as mutual

information between its current and past state, it follows from (2.60) that the active

information estimator is written as

Â
(k)
X = ψ(k) + ψ(N) −

〈
ψ(n

x
(k)
t−1

+ 1) + ψ(nxt + 1)
〉

. (2.61)

20

As for an estimate of transfer entropy Gomez-Herrero et al. [7] generalized the idea

of Kraskov et. al. [13]. Let V = (V1, . . . , Vm) be a random m-dimensional vector. Then

the entropy combination is defined as

C(VL1 , . . . , VLp) =

p∑

i=1

siH(VL1) − H(V) (2.62)

where ∀i ∈ [1, p] : Li ⊂ [1,m] and si ∈ {−1, 1} such that
∑p

i=1 siχLi
= χ[1,m] where χS

is characteristic function of S and the entropy combination estimator is given by

Ĉ(VL1 , . . . , VLp) = F (k) −
p∑

i=1

si 〈F (ki(j))〉 (2.63)

where F (k) = ψ(k) − ψ(N) and ki(j) = nVLi
(j) + 1 for j = 1, . . . , N as formulated in

section 2.3.5.

For example, from equation (2.56) it can be seen that mutual information is an

entropy combination. Similarly from the one of the expressions for conditional mutual

information

I(X; Y | Z) = H(X,Z) + H(Y, Z) − H(Z) − H(X,Y, Z) (2.64)

it follows that I(X; Y | Z) is also an entropy combination and combining (2.63) and

(2.64) we get the KSG estimator for conditional mutual information

Î(X; Y | Z) = ψ(k) − 〈ψ(nxz + 1) + ψ(nyz + 1) − ψ(nz + 1)〉 . (2.65)

Finally directly from definition 14 we get the KSG transfer entropy estimator

T̂
(k,l)
Y →X = ψ(k) −

〈
ψ(nxt,xk

t−1
+ 1) + ψ(nyl

t−1,xk
t−1

+ 1) − ψ(nxk
t−1

+ 1)
〉

. (2.66)

2.3.6 Estimator parameter determination

The KSG estimator belongs to a class of nonparametric estimation methods. Nev-

ertheless, since it is based on k-nearest neighbour search, k in the nearest neighbour

algorithm is one of the parameters we have to choose. This parameter has to be empir-

ically determined. Kraskov et al. [13] suggest k > 1 but not too large because of the

increase of systematic errors. Generally they propose to use k from 2 to 4. Bossomaier

et al. [3] writes that for k ≥ 4 the estimator is robust and Wibral [20] writes that k = 4

has been determined as a good choice for ECoG data.

21

Another problem is to determine the embedding vector as defined in definition 14.

For example, in case of transfer entropy we would like as much of information that is

contained in the target process about its own past to condition out. If we do not do this,

the measured information transfer might be due to self prediction of the target process

and not due to dependance of the source and target processes. The method for finding

an optimal value for the embedding vector is also called state space reconstruction.

There are multiple methods to determine the state space vectors. One way is to set

the pair of parameters (m, τ) such that it maximizes the active information storage.

Wibral et al. [20] propose to optimize the embedding parameters using the Ragwitz–

Kantz criterion.

Ragwitz and Kantz [17] proposed a method to extract a Markov process of order

m > 1 from observed scalar time series using locally constant predictors. In the

following paragraphs we will briefly describe this method.

Let sn = (sn, sn−τ , . . . , sn−(m−1)τ) be time delay embedding vector such that sn+1 =

g(sn) exists. Then the locally constant predictor for the unobserved sn+1 is

ŝn+1 =
1

|Un|

∑

sk∈Un

sk+1 (2.67)

i.e . the mean of the immediate futures of the ε-neighbours of ~sn where

Un = {sk : ‖sk − sn‖ ≤ ε} .

Ragwitz and Kantz in [17] argue that locally constant predictor is a predictor based

on Markov transition probability assumption

p(sn+1|sn, sn−τ , . . . , sτ) = p(sn+1|sn, sn−τ , . . . , sn−(m−1)τ).

To get the transition the probabilities p(sn+1|sn), a locally constant approximation is

used in the form p(sk+1|sk) ≈ p̂(sn+1|sn) ∀ sk ∈ Un. The justification of a locally

constant predictor follows then from the idea that if we use the mean square error of

predictions e2 =
∑N

i=1(si+1 − ŝi+1)
2 then the best estimator of sn+1 is

ŝn+1 =

∫

~sk∈Un

sk+1p(sk+1|sn)dsk+1 (2.68)

Thus we take those time delay embedding vector parameters as optimal which minimize

the locally constant prediction error i.e.

(m, τ) = arg min
m∈Z,τ∈Z

∥
∥
∥~s − ~̂s

∥
∥
∥ . (2.69)

22

2.3.7 Transfer entropy significance testing

One of the problems that plague all transfer entropy estimators is bias. Either sys-

tematic errors or statistical errors are both the properties of estimators that have to

be dealt with. If we observe a non-zero value of transfer entropy it can be due to

bias or variance and the transfer entropy estimator (2.66) is no exception. Since KSG

method is non-parametric one of the suggested statistical testing options is to use a

permutation test [20] [3].

We are going to test the null hypothesis that there is no relationship between the

source and target variables. First we have to come with surrogate source variable under

to assumption that the null hypothesis is true. One way to do it is to by permuting y
(l)
t−1

in the joint probability space {xt,x
(k)
t−1,y

(l)
t−1} thus destroying any predictive dependence

of Y to X, and computing TYsur→X of the surrogate source variable Ysur. Repeating this

procedure multiple times we can compute one-sided p-value of the test by the following

equation:

P (TYsur→X ≥ TY →X) =
∑

Ysur:TYsur→X≥TY →X

P (Ysur). (2.70)

If the p < 0.05 we reject the null hypothesis at the 5% significance level.

23

Chapter 3

Experiments

Our aim was to explore the information flow within the ESN reservoir and its relation-

ship to specified task performance. For this reason a specific ESN model had to be

chosen. This meant fixing the hyperparameters of the model. At first we wanted to

extend the work done by Boedecker et al. [2].

3.1 Experimental setup

For comparability reasons and consistence of results we choose the same ESN model

and also two benchmark tasks used by Boedecker et. al. [2]. The benchmark tasks we

used is memory capacity task, and one-step ahead prediction of one stochastic and two

deterministic processes.

ESN setup

We used ESNs with N = 100 reservoir units. A single input neuron and Q output

neurons depending on the task. Concretely 120 output neurons for the memory ca-

pacity task and 1 output neuron for the prediction tasks. We didn’t use a bias unit

in the input and output layers, nor direct input–output connections. The leaking rate

in (2.7) was set to α = 0. The input weight matrix was initialized from uniform distri-

bution U(−0.1; 0.1). The elements of the reservoir matrix W were drawn from normal

distribution N (0; 0.5). Concerning the learning process, we set β = 0 in the Tikhonov

regularization in expression (2.11), effectively getting direct pseudoinverse computation

of the readout matrix Wout. We discarded the first 100 samples of the reservoir neuron

24

activations in order to get the network running and to get rid of the transients, and

1000 samples of the reservoir neuron activations along with desired outputs were used

to set the readout weights. Next 2000 samples from the network output were used to

test the networks performance.

3.1.1 Benchmark tasks

In our experiments we used four standard benchmark tasks that are used by the reser-

voir computing community.

1. Memory capacity (MC)

In order to measure the networks ability to recall past input, a sequence of in-

dependent identically distributed real numbers drawn from uniform distribution

on the closed interval [−1; 1] was used as the driving signal.

Figure 3.1: Input used in memory capacity task

2. NARMA

We used 30-th order NARMA time series for one time step ahead prediction. The

NARMA model was given by the following formula:

u(t + 1) = 0.2 u(t) + 0.004 u(t)
29∑

i=0

u(t − i) + 1.5 q(t − 29)q(t) + 0.001 (3.1)

where ∀ t : q(t) ∼ U(0; 0.5).

3. Mackey-Glass system (M–G)

25

Figure 3.2: Input used in NARMA prediction task.

Another standard benchmark task we used is the one time step ahead predic-

tion of the Mackey-Glass system. The system is given by time–delay differential

equation
du

dt
= 0.2

u17

1 + (u17)10
− 0.1u (3.2)

where u17 is the value of u at time t − 17.

Figure 3.3: Input used in M–G prediction task.

4. Lorenz system

The last task was the one step ahead prediction of the x-coordinate of the Lorenz

26

system given by the following ordinary differential equations:

dx

dt
= 10(y − x) (3.3)

dy

dt
= x(28 − z) − y (3.4)

dz

dt
= xy −

8

3
z. (3.5)

Figure 3.4: Input used in Lorenz prediction task.

Regarding the assessment of performance, for measuring the memory capacity task

performance we used measures introduced in section 2.2.5 and in the cases of prediction

tasks we used the normalized root mean square error computed as:

NRMSE =

√
〈(ŷ(t) − y(t))2 〉t

〈(y(t) − 〈y(t)〉t)2 〉t
(3.6)

where ŷ(t) denotes the predicted value of the process, y(t) is the true value of the

process and 〈∙〉t denotes the time-average.

3.2 Information measures, performance and stability

In order to explore the relationship between transfer entropy, active information storage

and task performance we followed the idea of Boedecker [2] and computed average TE

and AIS within the ESN reservoir for different stability modes. To assess the stability

of reservoir we computed the maximum Lyapunov exponent introduced in section 2.2.6.

27

Since the maximum Lyapunov exponent can be manipulated only indirectly, we varied

the variance σ of the distribution from which the elements of the reservoir matrix were

drawn. To get a vide enough spectrum of stability instances we increased σ in such a

way that log σ ∈ [−1.5;−0.25] in 26 steps. For every value of σ (step) we created 5

instances of reservoir matrices. Altogether 130 instances of reservoir matrices and for

every such matrix we measured λ, its performance (MC/NRMSE), TE and AIS.

Concerning the setting of the TE and AIS estimators parameters, ideally we would

determine them using Ragwitz-Kantz criterion introduced in section 2.3.6 but estimat-

ing optimal signal embedding for every neuron for every instance would be computa-

tionally demanding. Thus we set the target signal embedding in the TE computation

and the signal embedding in AIS computation to k = 2 and τk = 1, the source signal

embedding in the TE computation to l = 1 and τl = 1. We didn’t change these set-

tings in the course of simulations. In the same manner we set the number of nearest

neighbour in the k-NN search to 4.

Since the KGS estimator has some inherent systematic error, for TE and AIS close

to zero the T̂E and ÂIS estimates can be negative. From the definition of TE and AIS

as special cases of Kullbeck–Leibler divergence, the values can be only non-negative.

Therefore we have set all the negative values of TE and AIS in the experiments to zero

since the purpose of the experiments was not to test whether there is some information

transfer but to compare changes of information transfer in various settings.

3.2.1 MC task

The results in case of MC task are presented in Figure 3.5. The performance (MC)

in this task peaks just before the phase transition from the stable regime to unstable

regime. Similarly the information measures peak around the critical point λ ≈ 0. MC,

TE and AIS sharply drop to minimal values in the unstable mode (λ > 0). With

decreasing λ in negative range, MC raises and unexpectedly TE falls steadily. AIS

does not seem to change accordingly to the changes in TE and MC.

3.2.2 NARMA task

In case of the NARMA task the results are shown in Figure 3.6. The behavior of

information measures and performance (NRMSE) is similar to the MC task. The

28

Figure 3.5: Average values of TE and AIS within the reservoir, and memory capacity in relation

to the maximum Lyapunov exponent λ in the MC task. Every datum represents one instance of the

reservoir matrix.

Figure 3.6: Average values of TE and AIS within the reservoir, and NRMSE in relation to the

maximum Lyapunov exponent λ in the NARMA prediction task. Every datum represents one instance

of the reservoir matrix.

performance peaks close to the phase transition (λ ≈ 0), as well as TE and AIS, and

falls sharply after the phase transition into the the unstable regime. Similarly to the

MC task, the performance raises with increasing λ (NRMSE decreases) and also TE

in the negative range. AIS doesn’t seem to change accordingly.

3.2.3 M–G task

The behavior of information measures and performance in case of M–G task, shown in

Figure 3.7, is quite different from previous tasks. First, the performance does not peak

close to the phase transition, but rather in the more stable region (λ � 0) and second

TE doesn’t seem to change in relation to the performance as in the MC and NARMA

29

tasks. On the other hand information measures peak at criticality as in previous cases

and fall sharply in the unstable region but AIS stays high for λ > 0.

Figure 3.7: Average values of TE and AIS within the reservoir, and NRMSE in relation to the

maximum Lyapunov exponent λ in the M–G prediction task. Every datum represents one instance of

the reservoir matrix.

3.2.4 Lorenz task

The results from Lorenz task (Figure 3.8) resemble those from the M–G task in that the

performance peaks in stable stable regime far from the critical point. TE and AIS also

peak further from the critical point than in previous cases. The decrease of performance

and information measures from the stable to unstable regime is more gradual than in

previous cases indicating that our ESN model is less sensitive to the stability of the

reservoir in case of Lorenz driving signal. There seems to be a relationship between

TE and performance similar to the MC and NARMA in the stable mode.

3.2.5 Conclusion

From the observed results it seems that there is an unexpected relationship between the

information measures and performance for λ in stable region. To look at this relation-

ship we computed various correlation coefficients between corresponding information

measure and the performance. As the transition from the stable to the unstable mode is

gradual and task dependent, we looked at the instances for which λ is in stable mode,

and such that it maximazes the Pearson correlation coefficient. Thus we gradually

decreased the size of the interval beginning with λ = 0 and for each interval com-

30

Figure 3.8: Average values of TE and AIS within the reservoir, and NRMSE in relation to the

maximum Lyapunov exponent λ in the Lorenz prediction task. Every datum represents one instance

of the reservoir matrix.

puted correlation coefficients. The results for maximal obtained Pearson correlation

coefficients are presented in Table 3.1 for TE and Table 3.2 for AIS.

We want to emphasize that the use of the correlation coefficents in such a way is

not correct. First the data we compute the correlations do not satisfy the assumptions

necessary for statistical testing, and second the idea of looking for maximal correlations

by search is questionable. Nevertheless we think it is a good way to explore for potential

relationships within the stable region.

In case of TE, our explorations imply that there seems to be negative relationship

between information flow and task performance at least for MC, NARMA and Lorenz

tasks. That means the higher the performance the lower the overall information flow

within the reservoir layer.

MC NARMA M-G Lorenz

λ ∈ [-0.6,-0.0064) λ ∈ [-0.6,-0.0017) λ ∈ [-0.6,-0.0013) λ ∈ [-0.9,-0.0233)

Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Pearson -0.920 1.9e-11 0.657 1.0e-05 0.706 9.3e-07 0.664 4.6e-05

Spearman -0.897 6.6e-13 0.657 1.0e-05 0.240 0.17 0.779 2.4e-07

Kendall -0.743 8.3e-09 0.444 1.0e-04 0.159 0.17 0.587 3.5e-06

Table 3.1: Values of correlation coefficients between TE and performance (MC or NRMSE depending

on task) in stable regimes.

In case of AIS, the selfpredictability of the units in the reservoir seems to depend

31

on the task. For MC task there seems to be a negative relationship between AIS and

performance, no relationship in NARMA and M–G tasks, and positive dependence in

Lorenz task (note that higher performance means lower NRMSE in NARMA, M–G

and Lorenz tasks, and higher MC in MC task). As if the network benefits more from

the selfpredictability of each neuron than from information exchange between different

units in the Lorenz task.

MC NARMA M-G Lorenz

λ ∈ [-0.6,-0.0064) λ ∈ [-0.6,-0.0017) λ ∈ [-0.6,-0.0013) λ ∈ [-0.9,-0.0233)

Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Pearson correlation -0.737 3.4e-06 0.01 0.954 -0.920 2.8e-16 -0.911 1.2e-12

Spearman correlation -0.708 1.2e-05 0.452 0.005 0.051 0.763 -0.866 3.2e-10

Kendall correlation -0.513 6.9e-05 0.3 0.009 0.038 0.734 -0.690 4.9e-08

Table 3.2: Values of correlation coefficients between AIS and performance (MC or NRMSE depending

on task) in stable regimes.

Altogether the results indicate a surprising inverse relationship between TE and

performance. To get a more precise answer to this hypothesis it is necessary to design

the experiments more thoroughly.

3.3 Reservoir neuron signal embedding

In the next step we wanted to get a closer look at information measures at different

stability settings but to achieve this, the values of KSG estimators parameters had

to be chosen. As already mentioned in section 3.2, ideally we would determine the

embedding vector and the time delay for every single neuron signal and use it in the

TE and AIS estimation. This approach would computationally very demanding and

the whole reservoir information measure estimation would be overparameterized. Thus

we simplified this task and set the TE and AIS parameters to one value for every

neuron in single reservoir.

To find this value we used the Ragwitz-Kantz criterion (section 2.3.6) to determine

the embedding vectors for every neuron in 100 instances of reservoir matrices for every

task and every scaling. Then the most frequent parameter observation in a speciffic task

and scaling was taken as the optimal value in subsequent TE and AIS computations.

32

The search space in the Ragwitz-Kantz method was k = 1, . . . , 6 for the the embedding

vector length and τ = 1, . . . , 6 for the time delay.

The ESNs were initialized according to section 3.1. and subsequently the reservoir

matrix was scaled in order to get a speciffic spectral radius (section 2.2.3) according to

desired stability properties i.e. unscaled for unstable, ρ = 0.6 for stable and ρ = 0.95

close to criticality. We also added two more scalings of the reservoir matrix according to

orthogonality/orthonormality introduced in section 2.2.7. We used the spectral radius

scaling ρ = 0.95 and then ran 30 iterations of the OG method (eq. 2.21) with the

learning rate η = 0.03. We did the same procedure with the ON method (eq. 2.22),

except that the learning rate was set to η = 0.07 ∗ (0.9)t, t = 0, . . . , 30. Altogether we

got 5 different scalings.

3.3.1 MC task

The results for the MC task are presented in Figure 3.9. The embedding length and

delay exploration have single maxima for all scalings. The maxima seem unsensitive to

scalings of the reservoir matrix. Also the most frequent choices of embedding vectors

are for the largest length allowed in the exploration, except for the scaling ρ = 0.6.

Due to the stochastic nature of the driving signal in the MC task it seems that the

single neuron signals can not be approximated by a Markov process and thus k → ∞.

Or the maximal allowed length in the exploration was to low.

Figure 3.9: (k, τ) pairs for various scalings of the reservoir in MC task. Each cell denotes the number

of occurrences when the locally constant predictor with the corresponding parameter pair minimized

the prediction error in a single neuron signal.

3.3.2 NARMA task

In the case of NARMA task the results, shown in Figure 3.10, are almost identical

to the result of the MC task. The maxima for every scaling are the same as in the

33

case of MC task. These similarities can be regarded as an indication that the neuron

activation signals in the MC and NARMA tasks have some identical properties. For

example the order of the underlying Markov process.

Figure 3.10: (k, τ) pairs for various scalings of the reservoir in NARMA task. Each cell denotes

the number of occurrences when the locally constant predictor with the corresponding parameter pair

minimized the prediction error in the single neuron signal.

3.3.3 M–G task

The results of the M–G task exploration are presented in Figure 3.11. In this case there

are also single maxima but for the scaled instances there is a possibility of a second

node for τ > 6. The scalings of the reservoir matrix have a noticeable influence on the

embedding vector choice, very different from the MC and NARMA tasks. This also

implies that the scaled neuron signals for this task could be approximated by a Markov

process of order 2.

Figure 3.11: (k, τ) pairs for various scalings of the reservoir in M–G task. Each cell denotes the

number of occurrences when the locally constant predictor with the corresponding parameter pair

minimized the prediction error in the single neuron signal.

3.3.4 Lorenz task

The results for the Lorenz task (Figure 3.12) are similar to the M–G task in that they

have singular maxima nodes and the length of the most frequent embedding vector is

2. The difference is in delay τ and that the distribution of winning (k, τ) pairs is more

34

spread than in previous cases. The higher delay τ could be explained by a small 4t

time step when the training and validation dataset was created.

Figure 3.12: (k, τ) pairs for various scalings of the reservoir in Lorenz task. Each cell denotes the

number of occurrences when the locally constant predictor with the corresponding parameter pair

minimized the prediction error in the single neuron signal.

3.3.5 Conclusion

As a side product of the search for optimal values of the KSG estimators parameters

which are presented in Table 3.3, we did get an insight into the complexity of reservoir

neuron activation signals. If we consider the order of an underlying Markov process

as a measure of how complex an observed time series is then the reservoir activations

in the MC and NARMA tasks have the same complexity, and the same goes for M–G

and Lorenz tasks. This was expected since the former are driven by a stochastic signal

and the latter by a deterministic signal.

HHHHHHHHH
Scaling

Task MC NARMA M–G Lorenz

k τ k τ k τ k τ

init 6 1 6 1 6 1 6 1

ρ = 0.6 4 1 4 1 2 1 2 3

ρ = 0.95 6 1 6 1 2 1 2 2

OG 6 1 6 1 2 1 2 2

ON 6 1 6 1 2 1 2 3

Table 3.3: Most frequent (k, τ) pairs for each task and scaling.

3.4 Analysis of information transfer in the reservoir

In the final step we wanted to have a closer look at the behaviour of the reservoir in

different settings (introduced in section 3.1) regarding the information transfer. We

35

generated one instance of the input weight vector win and one instances of the recurrent

weight matrix W defined in section 3.1), and used them in all subsequent scalings and

tasks. In the computations of the information measures in every task and scaling, we

used the most frequent observations of the pair (k, τ) listed in table 3.3 as parameters of

the target variable in the TE estimator and as global parameters in the AIS estimator.

The source variable parameters in the TE estimator were set to (1, 1), as we wanted to

observe only how the most recent past of the source unit influences the target unit.

Similarly to section 3.2 we dealt with the problem of systematic error and negative

value of TE and AIS estimations. In this case we chose to implement the permutation

test for TE introduced in section 2.3.7. For every T̂EY →X we computed p-value from

100 surrogate source variables Ysur generated from the corresponding source variable

Y . We set T̂EY →X = 0 if p > 0.05. Negative AIS values were set to zero in same

manner as in section 3.2.

In order to quantify not only the global changes of information transfer due to

scalings but also the changes in distribution of TE (when we consider the values of TE

as a random variable), we computed relative entropy (Kullbeck–Liebler divergence) of

TE, because the relative entropy is according to section 2.3.2 a more suitable measure

of disorder (uncertainty) in a system when considering a continuous random variable

then differential entropy. For the probability distribution m(x) in eq. 2.40, we chose the

uniform distribution as it maximizes the differential entropy when no prior knowledge

about the distribution is available 1. We choose the support of the uniform distribution

to be the closed interval [0; maxTE] where maxTE is the maximum observed value

of TE in a specific task and scaling. The estimator of the relative entropy takes the

following form:

∣
∣
∣H
(
TE

(k,l)
RES

)∣∣
∣ = D̂KL

(
TE

(k,l)
RES ‖U

(
0; max

{
TE

(k,l)
RES

}))
(3.7)

= ln
(
max

{
TE

(k,l)
RES

})
− ĤKL

(
TE

(k,l)
RES

)

where ln(max TE
(k,l)
RES) is the exact differential entropy of the uniform distribution with

the support in [0; max TE
(k,l)
RES], ĤKL(∙) is the Kozachenko-Leonenko entropy estima-

1It can be proved that the uniform distribution has the maximum differential entropy among

all continuous distributions supported in the closed interval [a, b]. The proof follows from the non-

negativity property of Kullbeck-Liebler divergence

36

Figure 3.13: The matrices (N×N) of TE values in the reservoir for different scalings in MC task.

Rows of the matrix denote source units and columns denote target units. Dark color represents high

values, light color represents low values.

tor(introduced in section 2.3.5) and TE
(l,k)
RES is the distribution of the estimates of trans-

fer entropies in the reservoir.

3.4.1 MC task

The visualisation of TE in reservoir for 5 different scalings in case of MC task is

presented in figure 3.13. There is a noticeable change in the amount of TE by the

transition from unscaled to scaled reservoir. Unscaled represents unstable regime, and

scalings to spectral radius ρ = 0.6 and ρ = 0.95 represent stable regime and criticality

respectively. Corresponding Lyapunov exponents λ values are listed in table 3.4. In

case of ρ = 0.6 there are a few target neurons that have high values of TE (dark

columns).The transition to criticality leads to the performance rising and global value

of TE decreasing, as observed in section 3.2.1. Concerning the OG and ON scalings

there is an improved performance in case of OG and similar decrease of TE.

Figure 3.14 plots histograms of distribution of TE in corresponding reservoir scaling.

We can observer the most visible changes from unscaled, to ρ = 0.6 and to ρ = 0.95.

The quantification of the level of disorder of TE within the maximum value in every

scaling is represented in table 3.4 by the relative entropy of TE. The unscaled case

has the lowest value of relative entropy which means its distribution is closest to the

uniform distribution. We can interpret this result that the unscaled case has the highest

level of disorder of TE among all scalings. With the transition to ρ = 0.6 the level of

disorder decreases and further decreases towards the criticality scaling. An interesting

observation is that the OG scaling has the highest performance lowest TE and highest

relative entropy of TE among the scalings ρ = 0.6, ρ = 0.95, OG and ON.

Figure 3.15 provides the visualisation of the changes in AIS due to scaling for every

37

Figure 3.14: Histograms of TE distribution changes due to reservoir scaling in MC task (log scale

is used).

unit. The results are consistent with results in section 3.2.1 in that the closer we are

to critical point the higher the AIS value. An interesting observation is that the OG

scaling has a minimal AIS value as well as TE value among the scalings ρ = 0.6,

ρ = 0.95, OG and ON.

Figure 3.15: AIS values for every unit (N) in various reservoir scalings in MC task.

We also looked at distributions of reservoir activation signals (figure 3.16) for differ-

ent scalings. The values of all the scalings settings except for unscaled case are within

the range where the activation function can be approximated by a linear function what

means that the reservoir does not benefit from the nonlinearities of tanh activation

function.

38

Figure 3.16: Reservoir neuron activation distributions for various reservoir scalings in MC task (in

log scale).

MC task Unscaled ρ = 0.6 ρ = 0.95 OG ON

MC 0.06 17.8 32.8 47.4 33.3

Average TE 0.007 0.091 0.047 0.041 0.061

Average AIS 0.027 0.146 0.151 0.12 0.148

Rel. entr. of TE 0.981 0.629 1.147 1.044 1.009

LE 0.53 −0.52 −0.06 −0.09 −0.16

Table 3.4: Quantitative measures for MC task, in case of initialized, scaled and orthogonalized

reservoirs.

3.4.2 NARMA task

The results in NARMA task are very similar to the results in MC task. There is a

visible change in the structure of TE matrices (Figure 3.17) with the transition from

the unscaled to scaled cases. Also we can observe similar high TE target units(dark

columns) for ρ = 0.6 and for ρ = 0.95, OG and ON cases and more spread distribution

of TE in the reservoir. The Lyapunov exponent λ in all scalings is almost identical to

the MC task.

The probability distribution of TE in the reservoir presented in Figure 3.17 look

similar to the MC task as well. The biggest differences are between unscaled, scaled

to ρ = 0.95, OG and ON, and ρ = 0.6 scalings. These differences are supported by the

statistical testing we performed on the mean square errors (MSE) in every scaling using

Kruskal–Wallis test. The differences in MSEs in the scalings ρ = 0.95, OG and ON are

not statistically significant. Nevertheless from table 3.5 we get the same observation as

39

Figure 3.17: The matrices (N×N) of TE values in the reservoir for different scalings in NARMA

task. Rows of the matrix denote source units and columns denote target units. Dark color represents

high values, light color represents low values.

in the MC task. In case of OG scaling the the performance is maximal, TE is minimal

and relative entropy of TE is maximal among the scalings ρ = 0.6, ρ = 0.95, OG and

ON.

Figure 3.18: Histograms of TE distribution changes due to reservoir scaling in NARMA task (log

scale is used).

The values of AIS for every unit in reservoir for every tested scaling shown in

Figure 3.19, shows again qualitative similarities of MC and NARMA tasks. There are

visible changes when comparing unscaled and scaled cases. In this case the lowest mean

value of AIS among the scalings ρ = 0.6, ρ = 0.95, OG and ON is observed in case of

ρ = 0.95.

Concerning the distribution of reservoir unit activations (Figure 3.20), it is even

more focused when compared to the MC task. This means that the reservoir does not

benefit from the nonlinearities of the tanh activation function for the scalings ρ = 0.6,

ρ = 0.95, OG and ON, and could be replaced by a linear function.

40

Figure 3.19: AIS values for every unit (N) in various reservoir scalings in NARMA task.

Figure 3.20: Reservoir neuron activation distributions for various reservoir scalings in NARMA task

(in log scale).

NARMA Unscaled ρ = 0.6 ρ = 0.95 OG ON

NRMSE 2.143 0.98 0.83 0.82 0.84

Average TE 0.007 0.087 0.052 0.043 0.066

Average AIS 0.023 0.267 0.247 0.232 0.257

Rel. entr. of TE 1.086 0.783 1.174 1.115 1.039

LE 0.52 −0.53 −0.062 −0.089 −0.16

Table 3.5: Quantitative measures for NARMA task, in case of initialized, scaled and orthogonalized

reservoirs.

3.4.3 M–G task

In the case of M–G task there are noticeable differences in quality and quantity with

the transition from scaled to unscaled when compared to the previous tasks. This

41

Figure 3.21: The matrices (N×N) of TE values in the reservoir for different scalings in M–G task.

Rows of the matrix denote source units and columns denote target units.

supports our findings from sections 3.2 and 3.3. There is only negligible global value

of TE in the unscaled reservoir, but the minimal value among scaled reservoirs is for

ρ = 0.6 as opposed to OG in MC task and ρ = 0.95 in NARMA task. The same goes

for performance. We observe the best performance for the scaling ρ = 0.6, which is in

the stable region of the Lyapunov exponent spectrum. We have performed a Kruskal–

Walis test for differences in MSE among 5 scalings and found statistically significant

diferences in unscaled, ρ = 0.6 and ρ = 0.95. For the scalings ρ = 0.95, OG, ON there

is no significant difference.

The distribution of TE in various scalings (Figure 3.22) shows some interesting

similarities and differences when compared to MC and NARMA tasks. The maximum

values of TE are lower than in MC and NARMA tasks (max TE ≈ 0.6 vs. max

TE ≈ 1.1 respectively) but the distributions of unscaled and ρ = 0.6 look visually

similar to MC and NARMA cases. Also quantitatively, the relative entropy of TE

(Table 3.6) how smaller values compared to MC and NARMA tasks, meaning that the

distribution of TE is more closer to uniform distribution. This can be observed visually

in the TE matrices (Figure 3.21). Similarly to previous tasks the scaling with the best

performance (ρ = 0.6) has the lowest value od mean TE and lowest value of relative

entropy among the scalings ρ = 0.6, ρ = 0.95, OG, ON.

The values of AIS for individual units in various scaling are presented in Figure 3.23.

Similarly to previous tasks, there is a noticeable shift from unscaled to scaled reservoirs

but in M–G task the values of AIS are much higher (max AIS ≈ 3.4) than in MC and

NARMA tasks (max AIS ≈ 0.4 and max AIS ≈ 0.7). The best performing scaling

(ρ = 0.6) has the highest mean value of AIS among the scalings ρ = 0.6,ρ = 0.95,

OG and ON. This observation extends our findings from section 3.2. Compared to the

MC and NARMA tasks, the best performing scaling had the lowest AIS among scaled

42

Figure 3.22: Histograms of TE distribution changes due to reservoir scalings in M–G task (log scale

is used).

instances.

Figure 3.23: AIS values for every unit (N) in various reservoir scalings in M–G task.

The reservoir activations are similarly distributed as in previous cases (Figure 3.24).

That is the activations in scaled reservoirs are very focused around zero meaning the

operate in the linear mode and do not benefit from the nonlinearities of tanh activation

function.

3.4.4 Lorenz task

The results in the Lorenz task confirm our findings in section 3.3 that there are two

complexity classes in tested tasks. MC and NARMA, and M–G and Lorenz. The

result regarding quantitative and qualitative properties of TE in Lorenz task are very

much like the results in M–G task. The structure of TE matrices for various scalings

43

Figure 3.24: Reservoir neuron activation distributions for various reservoir scalings in M–G task (in

log scale).

Mackey–Glass Unscaled ρ = 0.6 ρ = 0.95 OG ON

NRMSE 1.13 0.00025 0.00026 0.0003 0.00026

Average TE 0.007 0.154 0.248 0.263 0.239

Average AIS 0.029 3.204 3.073 3.142 3.115

Rel. entr. of TE 1 0.266 0.386 0.587 0.318

LE 0.53 −0.52 −0.062 −0.09 −0.16

Table 3.6: Quantitative measures for M–G task, in case of initialized, scaled and orthogonalized

reservoirs.

Figure 3.25: The matrices (N×N) of TE values in the reservoir for different scalings in Lorenz task.

Rows of the matrix denote source units and columns denote target units.

(Figure 3.25) resembles the TE matrices in M–G task, just with overall lower TE values.

The best performance is observed in the ρ = 0.6 scaling just as in M–G task, which

means better performance in stable regimes than closer to criticality. The Kruskal-

Wallis test showed statistically significant differences between all scalings.

The distributions of various scalings in Lorenz task presented in Figure 3.25 show

generally lower values of TE and also mean TE when compared to M–G task. Also the

44

structure of the distribution has some dissimilarities for scalings ρ = 0.6, ρ = 0.95, OG

and ON. Regarding the relative entropy of TE shown in Table 3.7, in case of the scaling

which has the largest performance (ρ = 0.6) has also the largest relative entropy of TE

among the scalings ρ = 0.6, ρ = 0.95, OG and ON. This observation is a difference

to NARMA and M–G prediction tasks where the scaling with the biggest performance

has the smallest relative entropy of TE.

Figure 3.26: Histograms of TE distribution changes due to reservoir scaling in Lorenz task (log scale

is used).

AIS global and individual unit values, shown in Figure 3.27, are again higher when

compared to MC and NARMA tasks. Overall the plot is very similar to the case of

M–G task and also the scaling with the best performance (ρ = 0.6) has the largest

mean value of AIS among alls scalings.

Figure 3.27: AIS values for every unit (N) in various reservoir scalings in Lorenz task.

The values of reservoir unit activations observed in Figure 3.28 for all scalings cover

the whole range of the tanh activation fucntion. This is a change when comparing to

45

Table 3.7: Quantitative measures for Lorenz task, in case of initialized, scaled and orthogonalized

reservoirs.

Lorenz Unscaled ρ = 0.6 ρ = 0.95 OG ON

NRMSE 0.54 0.00012 0.0013 0.0034 0.00097

Average TE 0.007 0.087 0.157 0.154 0.122

Average AIS 0.025 3.157 2.971 2.932 3.002

Rel. entr. of TE 1.018 0.642 0.231 0.19 0.217

LE 0.52 −0.74 −0.28 −0.35 −0.32

previous tasks. Still the most frequent activation values are around zero. This could

be explained by the range of the driving signal and that we used the same input matrix

win which is not an optimal input matrix for the Lorenz task but a compromise for

comparability reasons.

Figure 3.28: Reservoir neuron activation distributions for various reservoir scalings in Lorenz task

(in log scale).

3.4.5 Conclusion

The results presented in this section confirm those in sections 3.2 and 3.3, that there are

two complexity classes in relation to driving signals. This should come as no surprise

since the driving signals in MC and NARMA tasks are stochastic, and in M–G and

Lorenz are deterministic in nature. Performance wise M–G and Lorenz tasks do not

benefit from criticality, as is the case of MC and NARMA tasks, but operate better in

stable regimes.

46

When comparing task classes with complexity in mind, there is a general rise

in performance, TE and AIS, and decline in relative entropy of TE in reservoir be-

tween NARMA and M–G/Lorenz tasks. On the other hand when comparing scalings

within each task, the relationship is not so clear. In the stochastic complexity class

(MC/NARMA) we observe rise of performance, and decline of TE and AIS. In the

deterministic complexity class (M–G/Lorenz), rise in performance and AIS, decline

in TE. These results support the findings in section 3.2 regarding the behavior of in-

formation measures in relation to stability in stable region. Additional information

with regard to distribution of TE in the reservoir, shows that lower values of relative

entropy of TE are accompanied with better performance when comparing scalings in

MC, NARMA and M–G tasks. This is not the case in Lorenz task.

These results point to the hypothesis that there might be a relationship between

performance, global TE and distribution of TE in the reservoir. More precisely that

not only the amount of information transfer between units is important but also that

it should be more uniformly distributed in the reservoir. These claims should be thor-

oughly investigated.

47

Chapter 4

Discussion

48

Bibliography

[1] L. Barnett, A. B. Barrett, A. K. Seth, "Granger causality and transfer entropy

are equivalent for Gaussian variables", Physical Review Letters, vol. 103, no. 23,

p. 238701, 2009.

[2] J. Boedecker and O. Obst and J. Lizier and N. Mayer and M. Asada, "Information

processing in echo state networks at the edge of chaos", Theory in Biosciences,

vol. 131, pp. 205–213, 2012.

[3] T. Bossomaier, L. Barnett, J. T. Lizier, An Introduction to Transfer Entropy,

Springer, 2016.

[4] M. Cencini, F. Cecconi, A. Vulpiani, Chaos: From Simple models to complex sys-

tems (Series on Advances in Statistical Mechanics) (Volume 17), World Scientific

Publishing Co, 2009.

[5] I. Farkaš and R. Bosák amd P. Gergeľ,"Computational analysis of memory capac-

ity in echo state networks", Neural Networks, vol. 83, pp. 109–120, 2016.

[6] J. Geweke, "Measurement of linear dependence and feedback between multiple

time series", Journal of American Statistical Association, vol. 77, no. 378, pp.

304–313, 1982.

[7] G. Gómez-Herrero, W. Wu, K. Rutanen, M. C. Soriano, G. Pipa, R. Vicente,

"Assessing coupling dynamics from an ensemble of time series", Entropy, vol. 17,

no.4, pp. 1958–1970.

[8] S. Haykin, Neural Networks and Learning Machines (3rd Edition), Prentice Hall,

2009.

49

[9] K. Hornik, "Approximation capabilities of multilayer feedforward networks", Neu-

ral networks, vol. 4, pp. 251-257, 1991.

[10] H. Jaeger, "The "echo state" approach to analysing and training recurrent neural

networks", German National Research Institute for Computer Science, Tech. Rep .

GMD Report 148, 2001.

[11] H. Jaeger, "Short term memory in echo state networks", German National Re-

search Institute for Computer Science, Tech. Rep. GMD Report 152, 2001.

[12] E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge University

Press, 2003.

[13] A. Kraskov, H. Stögbauer, P. Grassberger, "Estimating mutual information,

Physics Reviews E, vol. 69, p. 066138, 2004.

[14] M. Lukoševičius, "A practical guide to applying echo state networks", In: G.

Montavon, G. B. Orr, and K.-R. Müller (eds.) Neural Networks: Tricks of the

Trade, 2nd ed. Springer,pp. 659-686, 2012.

[15] D. MacKay, Information Theory, Inference, and Learning Algorithms (fourth

printing), Cambridge University Press, 2005.

[16] M. Paluš, V. Komárek, Z. Hrnčíř, K. Šteřbová, "Synchronization as adjustment of

information rates: Detection from bivariate time series", Physical Review E, vol.

63, p. 046211, 2001.

[17] M. Ragwitz, H. Kantz, "Markov models from data by simple nonlinear time series

predictors in delay embedding spaces",Physics Reviews E, vol. 65, no. 5, p. 056201,

2002.

[18] T. Schreiber, "Measuring information transfer", Physical Review Letters, vol. 85,

no. 2, pp. 461–464, 2000.

[19] C. E. Shannon, "A mathematical theory of communication", Bell Systems Tech-

nical Journal, vol. 27, pp. 379–423, 1948.

[20] M. Wibral, R. Vicente, J. T.Lizier, Eds., Directed Information Measures in Neu-

roscience. Springer, 2014.

50

Appendix A

Software

All experiments were done in Python3.6 programming language, using NumPy

library for basic numerical computations, SciPy library for the implementation of

Digamma function computation, scikit-learn library for fast k-NN search imple-

menting the k-d tree data structure, and Matplotlib library for graphics.

51

	Introduction
	Theoretical background
	General notion of artificial neural networks
	Neural network as an approximation
	Classes of neural networks

	Echo state network
	Architecture
	Echo state property
	Hyperparameters
	Learning process
	Short term memory capacity
	Lyapunov characteristic exponent
	Reservoir orthogonalization and orthonormalization

	Information measures
	Introduction to information theory
	Limiting density of discrete points
	Transfer entropy and active information storage
	Transfer entropy and Granger causality
	Estimation of transfer entropy and active information storage
	Estimator parameter determination
	Transfer entropy significance testing

	Experiments
	Experimental setup
	Benchmark tasks

	Information measures, performance and stability
	MC task
	NARMA task
	M…G task
	Lorenz task
	Conclusion

	Reservoir neuron signal embedding
	MC task
	NARMA task
	M…G task
	Lorenz task
	Conclusion

	Analysis of information transfer in the reservoir
	MC task
	NARMA task
	M…G task
	Lorenz task
	Conclusion

	Discussion
	Software

