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1 Theoretical background

1.1 General notion of artificial neural networks

Artificial neural networks are getting more and more attention over the last
decades as advances in raw computational power make it possible to imple-
ment these computationally heavy algorithms as well as recent achievements
in better then human performance in certain tasks. In the next paragraphs
we provide basic theoretical concepts behind artificial neural networks.

1.1.1 Neural network model

Haykin [1] defines a neural network in the following way.
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Definition 1 A neural network is a massively parallel distributed processor
made up of simple processing units, which has a natural property for storing
experiential knowledge and making it available for use. It resembles the brain
in two respects:

1. Knowledge is acquired by the network from its environment through a
learning process.

2. Interneuron connection strengths, known as synaptic weight, are used
to store acquired knowledge.

The basic information-processing unit is called neuron. In mathematical
terms the neuron k of a system consisting of N neurons, can be written as a
pair of equations:

uk =
m∑

j=1

wkjxj (1)

yk = ϕ(uk + bk) (2)

where x1, x2, . . . , xm are the input signals, wk1, wk2, . . . , wkm are synaptic
weights, uk is called linear combiner output due to the input signals, bk is
called bias, ϕ(∙) is the activation function, and yk is the output signal of the
neuron.

There are two basic activation functions:

1. Threshold function

ϕ(v) =

{
1 if v ≥ 0

0 if v < 0
(3)

2. Sigmoid function

• logistic function

ϕ(v) =
1

1 + e−av
(4)

• hyperbolic tangent function

ϕ(v) = tanh(v). (5)
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1.1.2 Neural network as an approximation

One way to look at artificial neural networks is as a mapping

f : X → Y

where X is the set of inputs and Y is the set of outputs. In the language of
statistics we are dealing with nonparametric statistical inference. This view
is strongly supported by an important theoretical result proved by Hornik
[4], namely the universal approximation theorem.

Theorem 1 Let

N
(n)
k (ϕ) =

{

y : Rk → R | y(x) =
n∑

i=1

βiϕ(
m∑

j=1

wijxj − bi)

}

denote a set of all functions implemented by a network with n hidden units
and one output unit. If ϕ is continuous, bounded an nonconstant, then N

(n)
k

is dense in C(X) for all compact subsets X of Rk (C(X) is the space of all
continuous functions on X).

Here we can observe some similarities to the Stone-Weierstrass theorem. The
process of estimation of the synaptical weights wij for i = 1, . . . , n and j =
1, . . . ,m is called learning.

1.1.3 Classes of neural networks

The neurons of a neural network can be organized into many different struc-
tures. Many have been already developed and successfully applied to different
tasks. The structure is called network architecture and in general there are
two fundamentally different classes of network architectures:

1. Feedforward networks

The structure of neurons is organized in layers. There is an input layer,
hidden layer and output layer. The synaptical weights are only between
neurons of two concurrent layers and only in one direction. In other
words the output signals from one layer serve serve as input signals
to the neurons in the second layer. We say that the network is fully
connected when every unit in each layer of the network is connected
to every unit in the next layer. Otherwise we say that the network
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is partially connected. In general there can be multiple hidden lay-
ers. Theorem 1 deals with a feedforward network with a single hidden
layer. The standard learning algorithm for feedforward networks is
called backpropagation of error. Basically it is a form of gradient based
optimisation method.

2. Recurrent networks

A recurrent neural network has at least one feedback loop. Feedback as
is used is used in dynamical systems, that is when the output influences
the input of an element of the system. In the setting of neural network
let us consider a linear operators A and B, and an input-output rela-
tionship between two neurons

yk(n) = A[x
′

j(n)]

and
x

′

j(n) = xj(n) + B[yk(n)].

Modifying these equations we get

yk(n) =
A

1 − AB
[xj(n)].

We call the term A
1−AB

an closed-loop operator of the system, and AB
the open-loop operator. Generally the existence of feedback loops in
the neural network make the process of learning very difficult.

1.2 Echo state network

Echo state networks belong to the class of recurrent neural networks. This
type of architecture was first proposed by Jaeger [2]. In the next paragraphs
we will provide the structure and some properties of an echo state network.

1.2.1 Architecture

The architecture consists of input layer, reservoir and output layer. The
reservoir is a fully connected recurrent hidden layer. The update equations
are given by

x̄(t) = tanh(Win[1;u(t)] + Wx(t − 1)) (6)

x(t) = (1 − α)x(t − 1) + αx̄(t) (7)
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where x(t) ∈ RNx is vector of reservoir neuron activations and x̄(t) ∈ RNx is
its update at time step t, tanh(∙) is the activation function, Win ∈ RNx×(1+Nu)

is the input weight matrix, W ∈ RNx×Nx is the recurrent weight matrix, and
α ∈ (0, 1] is the leaking rate. The output is defined as

y(t) = Wout[1;u(t);x(t)] (8)

where y(t) ∈ RNy is network output and Wout ∈ RNy×(1+Nu+Nx) is the output
weight matrix.

Lukoševičius [5] writes that the reservoir serves two functions:

1. as a high-dimensional nonlinear expansion, similarly to kernel methods,
where input in input space is not linearly separable and by projecting
in a higher dimensional space it may become linearly separable.

2. as a dynamical short-term memory.

1.2.2 Echo state property

Jaeger in [2] defined the term echo state property, which is a necessary con-
dition for the echo state network to work. The definition for a network with
no output feedback is as follows:

Definition 2 Assume that input is drawn from a compact input space U and
network states lie in a compact set A. Assume that the network has no output
feedback connections. Then, the network has echo states, if the network state
x(n) is uniquely determined by any left-infinite input sequence ū−∞. More
precisely, this means that for every input sequence . . . ,u(n−1),u(n) ∈ U−N ,
for all state sequences . . . ,x(n − 1),x(n) and x

′
(n − 1),x

′
(n) ∈ A−N, where

x(i) = T(x(i − 1),u(i)) and x
′
(i) = T(x

′
(i − 1),u(i)), it holds that x(n) =

x
′
(n).

1.2.3 Hyperparameters

The specific instance of an echo state network is defined by a set of pa-
rameters, namely (Win,W, α). In the next paragraphs we will outline the
principles for choosing these parameters. We are going to follow the recom-
mendations according to Lukoševičius [5].

1. Reservoir matrix W

5



• Size of reservoir - the consensus is that the larger number of neu-
rons in the reservoir the better, but on the other there is danger
of over-parametrization and over-fitting. In general

T >= 1 + Nx + Nu

where T is the size of the dataset, Nx is the number of neurons in
reservoir, and Nu is the dimension of the input.

• Distribution of reservoir weights - at the initialisation step of the
algorithm the elements of the matrix W are randomly generated
and not much manipulated afterwards. The weights are drawn
independently from uniform or normal distribution symmetrical
around zero.

• Spectral radius - as was stated in section 1.2.2 the existence of the
echo state property in an echo state network is essential for the
network to work. Jaeger [2] states the network has no echo state
when the spectral radius of the reservoir matrix is |λmax(W)| > 1,
the admissible state set is [−1, 1]N and if the input set contains 0.
Thus is standard practice to scale the reservoir matrix W so that
|λmax(W)| < 1. The specific value |λmax(W)| has to determined
experimentally in way that maximizes performance.

2. Input matrix Win

Similarly to the initialization of the reservoir matrix W, the elements
of input matrix Win randomly selected either from uniform or normal
symmetrical distribution.

3. Leaking rate α

Assume a dynamical system

ẋ = −x + tanh(Win[1;u] + Wx)

and using a discretization of the system

ẋ ≈
x(t) − x(t − 1)

4t

we get

x(t) = (1 −4t)x(t − 1) + 4t tanh(Win[1;u(t)] + Wx(t − 1)). (9)
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By comparing equations (7) and (9) we can regard the leaking rate
parameter as the size of the discrete time step and scale accordingly.
In practice this parameter has to be determined experimentally.

1.2.4 Learning process

As can be seen from previous sections there hasn’t been any training involved,
yet. The the only training is in in finding the output layer weight matrix
Wout. Precisely solving

Ytarget = WoutX (10)

where Ytarget ∈ RNy×T , X ∈ R(1+Nu+Nx)×T and T the size of the training set.
Lukoševičius [5] proposes to use regression with Tikhonov regularization

Wout = YtargetXT(XXT + βI)−1 (11)

where β ∈ R is the regularization parameter and has to be determined ex-
perimentally. When β = 0 we get

Wout = YtargetX+ (12)

where X+ = XT(XXT)−1 is the right Moore-Penrose inverse.

1.2.5 Short term memory capacity

As has been already stated, due to the feedback loops, echo state networks
can be regarded as a dynamic short-term memory. Jaeger [3] defined a mea-
sure to quantify the reservoirs ability to store and recall past input. It is
called the short-term memory capacity:

Definition 3 Let ν(n) ∈ U (where −∞ < n < +∞ and U ∈ R is a compact
interval) be a single-channel stationary input signal. Assume that we have a
recurrent neural network, specified by its internal weight matrix W, its input
weight (column) vector win and the unit output functions f , f out. The network
receives ν(n) at its input unit. For a given delay k and an output unit yk with
connection weight (row) vector wout

k we consider the determination coefficient

d[wout
k ](ν(n − k), yk(n)) = (13)

= d

(

ν(n − k),wout
k

(
ν(n)
x(n)

))

=
cov2(ν(n − k), yk(n))

σ2(ν(n))σ2(yk(n)))
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where cov denotes covariance and σ2 variance.

1. The k-delay short term memory capacity of the network is defined by

MCk = max
wout

k

d[wout
k ](ν(n − k), yk(n)). (14)

2. The short term memory capacity of the network is

MC =
∞∑

k=1

MCk. (15)

Jaeger in [3] also proved a theoretical limit for the short-term memory
capacity:

Proposition 1 The memory capacity for recalling i.i.d input by a N-unit
recurrent neural network with linear output units is bounded by N.

1.2.6 Lyapunov characteristic exponent

The reservoir of an echo state network can be looked at as a discrete dynam-
ical system and the performance of the the whole network depends on its
stability. A popular measure of the degree of the instability of a dynamical
system is called the maximum Lyapunov characteristic exponent.

Definition 4 Let
x(t + 1) = f(x(t)) (16)

be a discrete time dynamical system and

x
′
(0) = x(0) + δx(0) (17)

be the initial conditions a trajectory x
′
(t) obtained by an infinitesimal dis-

placement from x(0) such that γ0 = ‖δx(0)‖ � 1. Then the maximum
Lyapunov characteristic exponent is

λ = lim
t→∞

1

t
ln

(
γt

γ0

)

< ∞ (18)

where γt = ‖x
′
(t) − x(t)‖.
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From the approximation
γt ∼ γ0e

λt (19)

it it can be seen that when λ > 0 the system is sensitive to initial conditions
and therefore is chaotic. For λ < 0 the system is sub-critical. The value
λ ≈ 0 is when phase transition occurs and is often referred to as the edge of
criticality or critical point.

For numerical computation of λ we implement a popular method accord-
ing to Cencini et.al [6].

1. We start with the infinitesimal perturbation γ0 and evolve to system
one time step ahead, thus getting a normalized tangent vector w(1) =
x
′
(1)−x(1)

γ0
and setting α(1) = ‖w(1)‖.

2. Next we rescale w(1) to w(1)
‖w(1)‖ and evolve system one step ahead again.

We repeat this process and store the amplitudes α(t) = ‖w(t)‖.

3. The maximum Lyapunov exponent is obtained as:

λ = lim
t→∞

1

t

t∑

i=1

ln(α(i)). (20)

In the echo state network setting we set the infinitesimal perturbation to
every neuron unit individually and compute λi of the i − th perturbed for
every i = 1, . . . , N of the N unit reservoir. The final estimated is computed
as average λ =< λi >.

1.2.7 Orthogonalization and orthonormalization of reservoir

We have already mentioned reservoir matrix scaling according to the desired
spectral radius. Another ways to scale the reservoir matrix is in relation to
orthogonality. More precisely to satisfy the condition W>W = I. Farkaš et.
al. [7] proposed a gradient based orthogonalization and orthonormalization
methods and have shown that the theoretical limits in the memory capacity
task, proved by Jaeger [3], can be achieved via this methods.

The update formula in case of the orthogonalization method is

4wi = −η
4

‖wi‖
(I − w̃iw̃

>
i )(W̃W̃>)w̃i (21)
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where η is the learning rate and W̃ denotes matrix W with normalized
columns.

The update formula for the orthonormalization method is

4wi = −η 4 (WW>W − W). (22)

1.3 Information measures

1.3.1 Introduction to information theory

In order to get an insight into transfer entropy and active information storage
we have to define some key information theoretic concepts. We will follow
the definitions according to MacKay [8]. At first we define the Shannon
information content and entropy of a discrete random variable X.

Definition 5 Shannon information content of an outcome x is defined to be

h(x) = log2

1

P (x)
. (23)

The units are called bits.

Definition 6 The entropy of an ensemble X is defined to be the average
Shannon information content of an outcome:

H(X) =
∑

x∈AX

P (x) log
1

P (x)
for P (x) 6= 0 (24)

= 0 for P (x) = 0

since limθ→0+ θ log 1
θ

= 0.

Next we need to define conditional entropy.

Definition 7 The conditional entropy of X given y = bk is the entropy of
the probability distribution P (x | y = bk).

H(X | y = bk) =
∑

x∈AX

P (x | y = bk) log
1

P (x | y = bk)
(25)
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Definition 8 The conditional entropy of X given Y is average, over y, of
the conditional entropy of X given y.

H(X | Y ) =
∑

y∈Ay

P (y)

[
∑

x∈AX

P (x | y) log
1

P (x | y)

]

(26)

=
∑

x∈AX ,y∈AY

P (x, y) log
1

P (x | y)
.

The interpretation of conditional transfer entropy is that it measures the
average uncertainty that remains about X when Y is known.

Now we can define mutual information and conditional mutual informa-
tion.

Definition 9 The mutual information between X and Y is

I(X; Y ) = H(X) − H(X | Y ). (27)

Mutual information measures the reduction of uncertainty about X that re-
sults from learning the value of y.

Definition 10 The conditional mutual information between X and Y given
z = ck is the mutual information between the random variables X and Y in
the joint ensemble P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (28)

Definition 11 The conditional mutual information between X and Y given
z = ck is the mutual information between the random variables X and Y in
the joint ensemble P (x, y | z = ck),

I(X; Y | z = ck) = H(X | z = ck) − H(X | Y, z = ck). (29)

Definition 12 The conditional mutual information between X and Y given
Z is the average over z of the conditional mutual information from Defini-
tion 11.

I(X; Y | Z) = H(X | Z) − H(X | Y, Z). (30)
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Entropy and all other measures based on entropy we have just introduced
are defined for a discrete set of probabilities. Shannon in [9] analogously
defined the entropy of a continuous distribution with the density distribution
function p(x) as

H(X) =

∫ ∞

−∞
p(x) log

1

p(x)
dx. (31)

This quantity is sometimes called differential entropy although this is not a
measure of uncertainty of the random variable X as Shannon intended it to
be.

Similarly, from the identity

I(X; Y ) =
∑

x∈AX ,y∈AY

P (x, y) log
P (x, y)

P (x)P (y)
(32)

we can define mutual information of a continuous variable as:

I(X; Y ) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (33)

1.3.2 Limiting density of discrete points

As it has been already noted in the previous section, Shannon’s formulation
of entropy for continuous variables is not an information measure. First
it lacks many properties of discrete entropy and second it is not a result of
any proper derivation. Nevertheless differential entropy has many theoretical
applications.

Jaynes in [19] proposed a different approach to defining entropy of a
continuous variable. Let xi, i = 1, . . . , n be discrete points such that

lim
n→∞

1

n
(number of points in a < x < b) =

∫ b

a

m(x)dx (34)

exists. Then the differences (xi+1−xi) in the neighbourhood of any particular
value of x will tend to zero so that

lim
n→∞

n(xi+1 − xi) = m(xi)
−1. (35)

The discrete probability P (xi) from Definition 6 will transform to

P (xi) = p(xi)(xi+1 − xi). (36)
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Equivalently from equation (35)

P (xi) → p(xi)
1

nm(xi)
. (37)

Plugging (36) and (37) into the definition of Shannon entropy Definition 6
we get

H(X) → −
∫

p(x)log

[
p(x)

nm(x)

]

dx. (38)

Following this reasoning, Jaynes defined the continuous information measure
as:

H(X) = lim
n→∞

[H(X) − log(n)] = −
∫

p(x)log

[
p(x)

m(x)

]

dx. (39)

1.3.3 Transfer entropy and active information storage

Let {x(t)} and {y(t)} be the realizations of two processes {X(t)} and {Y (t)}.
Paluš in [10] proposed, as an approach to measure the directional information
rate, to measure conditional mutual information I(y(t); x(t + τ) | x(t)). It
is the average amount of information contained in the process {Y (t)} about
the process {X(t)} in its future τ time units ahead conditioned on X(t),
as opposed to the mutual information I(y(t); x(t + τ) which can contain
information about X(t+τ) in X(t). Similarly Shreiber in [11] defines mutual
information rate of two Markov processes {I} and {J} of order k and l by
measuring the deviation from independence given by the Markov property
p(it+1 | i

(k)
t ) = p(it+1 | i

(k)
t , j

(l)
t ) using conditional Kullback-Leibler divergence

in the following form

DKL(P (It+1 | I
(k)
t , J

(l)
t )‖P (It+1 | I

(k)
t , J

(l)
t )) =

=
∑

p(it+1, i
(k)
t , j

(l)
t ) log

p(it+1 | i
(k)
t , j

(l)
t )

p(it+1 | i
(k)
t )

.

These ideas inspired the current definition of transfer entropy.

Definition 13 Let Xt and Yt be two processes. The transfer entropy from
the source Y with the history length k to the target X with history length l is

T
(k,l)
Y →X = I(Xt ;Y

(l)
t−1 | X

(k)
t−1) (40)
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where

X
(k)
t−1 = (Xt−1, Xt−1−τk

, Xt−1−2τk
, ..., , Xt−1−(k−1)τk

)

Y
(l)
t−1 = (Yt−1, Yt−1−τl

, Yt−1−2τl
, ..., , Yt−1−(l−1)τl

).

From the identity for conditional mutual information

I(X; Y | Z) = H(X) − I(X; Z) − H(X | Y, Z)

it follow that transfer entropy can be expressed as

T
(k,l)
Y →X = H(Xt) − I(Xt | X

(k)
t−1) + H(Xt | Y

(l)
t−1,X

(k)
t−1).

The second term on the right in the expression above has a special significance
for us.

Definition 14 The active information storage of the process X with history
length k is

A
(k)
X = I(X

(k)
t−1; Xt) = H(Xt) − H(Xt | X

(k)
t−1). (41)

The active information storage measures the amount of information in the
past state of X

(k)
t of X about its next value Xt.

1.3.4 Transfer entropy and Granger causality

Transfer entropy is closely related to another concept of dependency, namely
Granger causality. This relationship provides a different interpretation of the
concept of transfer entropy. Lets look take a closer look at it.

We take the definition of Granger causality from [12]

Definition 15 Let us use the notation from Definition 13. Let F (xt|x
(k)
t−1,y

(l)
t−1)

be the distribution function of the target variable Xt conditional on X
(k)
t−1,Y

(l)
t−1

and F (xt|x
(k)
t−1) be the distribution function of Xt conditional on its own past,

then variable Y is said to Granger-cause variable X if

F (xt|x
(k)
t−1,y

(l)
y−1) 6= F (xt|x

(k)
t−1). (42)
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Now, consider tow linear regression models

Xt = Xt−1A1 + . . . + Xt−kAk + Yt−1B1 + . . . + Yt−lBl + εt (43)

Xt = Xt−1A
′

1 + . . . + Xt−kA
′

k + ε
′

t (44)

with parameters of the models Ai, A
′

i, B
′

j . Geweke in [17] defined the measure
of Granger causality from Y to X the following way,

F
(k,l)
Y →X = log(|var(ε

′

t)|/|var(εt)|) (45)

where |∙| denotes the determinant. We can observe that this is actually log-
likelihood ratio test under the null hypothesis

H0 : B1 = ∙ ∙ ∙ = Bl = 0 (46)

when the residuals of the both model is gaussian.
From what has already been written it can be seen that both transfer

entropy and Granger causality are measures of predictive causality. The
similarity is even closer when we consider the joint process Xt, Yt as multi-
variate gaussian. Barnett et. al. in [18] proved that under these conditions
that Granger causality and transfer entropy are equivalent up to factor 2 i.e.

F
(k,l)
Y →X = 2T

(k,l)
Y →X . (47)

1.3.5 Estimation of transfer entropy and active information stor-
age

Estimation of entropy measures is an open problem. Currently there are
few available classes of estimators that one can choose from, based on the
properties of the observed data. Transfer entropy is no exception and the best
estimator given some specific criteria is yet to be determined. An overview
of transfer entropy estimators can be found in [12] or [13].

We are going to focus on one specific estimator of the class of estimators
based on k-nearest neighbour search.

Kozachenko-Leonenko Shannon entropy estimator We are going to
put the basic idea of behind Kozachenko-Leonenko differential entropy esti-
mator as was presented in [14].

Let X be a continuous random variable, f(x) be its density and its dif-
ferential entropy as defined in (9). Specifically
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H(X) =

∫ ∞

−∞
f(x) log

1

f(x)
dx. (48)

Then the Monte-Carlo estimate of H(X) is

Ĥ(X) =
1

N

N∑

i=1

log
1

f(xi)
. (49)

Since we don’t know f(xi) it has to be substituted by an estimate f̂(xi) which
we are going to find using k-nearest neighbours of xi.

Let Pk(ε) be the probability distribution of the distance between xi and
its kth nearest neighbour. Then Pk(ε)dε is the probability that there is one
point in the r distance from xi where r ∈< ε

2
; ε

2
+ dε

2
>, k − 1 points are at

distances less than r and N − k − 1 points are at distances greater than kth
nearest neighbour. Using multinomial distribution formula we get

Pk(ε)dε =
(N − 1)!

1!(k − 1!)(N − k − 1)!

(
dpi(ε)

dε
dε

)

(pi(ε))
k−1(1 − pi(ε))

N−k−1

(50)
where pi(ε) is the probability mass of ε ball centered at xi, that is

pi(ε) =

∫

‖ξ−xi‖< ε
2

f(ξ)dξ. (51)

It follows from (50) and (51) that the expectation value log pi(ε) is given by

E(log pi(ε)) =

∫ ∞

0

log pi(ε)Pk(ε)dε (52)

= ψ(k) − ψ(N)

where ψ(x) is the digamma function.
If we assume that f(x) is constant in the entire ε ball we can approximate

pi(ε) by
pi(ε) ≈ cdε

df(xi), (53)

where d is the dimension of x and cd is the volume of the d-dimensional unit
ball. For the maximum norm cd = 1.
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Finally taking the logarithm and expectation of (53), and combining it
with (52) and (49) we get Kozachenko-Leonenko entropy estimator

Ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑

i=1

log ε(i), (54)

where ε(i) is twice the distance from xi to its kth nearest neighbour.

Kraskov-Stögbauer-Grassberger mutual information estimator Kraskov,
Stögbauer and Grassberger in [14] came with a method of using Kozachenko-
Leoneko entropy estimator to estimate mutual information. Using the iden-
tity

I(X,Y ) = H(X) + H(Y ) − H(X,Y ) (55)

we are going to obtain an estimator Î(X,Y ).
First we directly apply Kozachenko-Leonenko entropy estimator to joint

random variable Z = (X,Y ) with maximum norm and we get

Ĥ(X,Y ) = −ψ(k) + ψ(N) +
dX + dY

N

N∑

i=1

log ε(i) (56)

where ε(i) is the ε
2

from zi to its kth nearest neighbour and dZ = dX + dY .
For the estimate of H(X) we take the distance ε(i) from (56) as an ap-

proximation of [nx(i)+1]st nearest neighbour of xi, where nx(i) is the number
of points in within ‖xj − xi‖ < ε

2
, and we get

Ĥ(X) = −
1

N

N∑

i=1

ψ(nx(i) + 1) + ψ(N) +
dX

N

∑
log ε(i). (57)

Analogously for the marginal space Y we get

Ĥ(Y ) = −
1

N

N∑

i=1

ψ(ny(i) + 1) + ψ(N) +
dY

N

N∑

i=1

log ε(i). (58)

Combining (55), (56), (57) and (58) we get the Kraskov, Stögbauer and
Grassberger estimator

I(1)(X,Y ) = ψ(k) − 〈ψ(nx + 1) + ψ(ny + 1)〉 + ψ(N) (59)

where 〈∙ ∙ ∙ 〉 = 1
N

∑N
i=1(∙ ∙ ∙ ).
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Estimating transfer entropy and active information storage estima-
tor Since active information storage of a process is defined in Definition 14
as mutual information between its current and past state, it follows from (59)
that the active information estimator is written as

Â
(k)
X = ψ(k) + ψ(N) −

〈
ψ(n

x
(k)
t−1

+ 1) + ψ(nxt + 1)
〉

. (60)

As for an estimate of transfer entropy Gomez-Herrero et. al. [15] gener-
alized the idea of Kraskov et. al. [14]. Let V = (V1, . . . , Vm) be a random
m-dimensional vector. Then the entropy combination is defined as

C(VL1 , . . . , VLp) =

p∑

i=1

siH(VL1) − H(V ) (61)

where ∀i ∈< i, p >: Li ⊂< 1,m > and si ∈ {−1, 1} such that
∑p

i=1 siχLi
=

χ<1,m> where χS is characteristic function of S and the entropy combination
estimator is given by

Ĉ(VL1 , . . . , VLp) = F (k) −
p∑

i=1

si 〈F (ki(j))〉 (62)

where F (k) = ψ(k) − ψ(N) and ki(j) = nVLi
(j) + 1 for j = 1, . . . , N as was

formulated in section 1.3.5.
For example, from equation (55) it can be seen that mutual information

is an entropy combination. Similarly from the one of the expressions for
conditional mutual information

I(X; Y | Z) = H(X,Z) + H(Y, Z) − H(Z) − H(X,Y, Z) (63)

it follows that I(X; Y | Z) is also an entropy combination and combining
(62) and (63) we get the Kraskov, Stögbauer and Grassberger estimator for
conditional mutual information

Î(X; Y | Z) = ψ(k) − 〈ψ(nxz + 1) + ψ(nyz + 1) − ψ(nz + 1)〉 . (64)

Finally directly from the definition 13 we get the Kraskov, Stögbauer and
Grassberger transfer entropy estimator

T̂
(k,l)
Y →X = ψ(k) −

〈
ψ(nxt,xk

t−1
+ 1) + ψ(nyl

t−1,xk
t−1

+ 1) − ψ(nxk
t−1

+ 1)
〉

. (65)

18



1.3.6 Estimators parameter determination

The Kraskov, Stögbauer and Grassberger belongs to a class of nonparametric
estimation methods. Nevertheless, since its based on k-nearest neighbour
searches, k in the nearest neighbour algorithm is one of the parameters we
have to chose.

This parameter has to be empirically determined. Kraskov et. al. [14]
suggest k > 1 but not too large because of the increase of systematic errors.
Generally they propose to use k = 2 − 4. Bossomaier et. al. in [12] writes
that for k ≥ 4 the estimator is robust and Wibral in [13] writes that k = 4
has been determined as a good choice for ECoG data.

Another problem is determining the embedding vector as was defined in
Definition 13. For example, in case of transfer entropy we would like as
much of the information that is contained in the target process to condition
out. If we won’t do this, the measured information transfer might be due
to self prediction of the target process and not the dependance of the source
and target processes. The method for finding the optimal values for the
embedding vector is also called state space reconstruction.

There are multiple methods to determine the state space vectors. One
way is to set (m, τ ) such that it maximizes the active information storage.
Wibral et. al. [13] propose to optimize the embedding parameters using the
Ragwitz-Kantz criterion.

Ragwitz and Kantz in [16] proposed a method to extract a Markov pro-
cess of order m > 1 from observed scalar time series using locally constant
predictors. In the following paragraphs we will briefly describe this method.

Let ~sn = (sn, sn−τ , . . . , sn−(m−1)τ ) be time delay embedding vector such
that sn+1 = g(~sn) exists. Then the locally constant predictor for the unob-
served sn+1 is

ŝn+1 =
1

|Un|

∑

~sk∈Un

sk+1 (66)

where Un = {~sk : ‖~sk − ~sn‖ ≤ ε}. In other words, the mean of the immediate
futures of the ε-neighbours of ~sn. Ragwitz and Kantz in [16] argue that lo-
cally constant predictor is a predictor based on Markov transition probability
assumption p(sn+1|sn, sn−τ , . . . , sτ ) = p(sn+1|sn, sn−τ , . . . , sn−(m−1)τ ). To get
the transition the probabilities p(sn+1|~sn), a locally constant approximation
is used in the form of p(sk+1|~sk) ≈ p̂(sn+1|~sn) ∀ ~sk ∈ Un. The justification of
locally constant predictor follows then from the idea that if we use the mean
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square error of predictions e2 =
∑N

i=1(si+1 − ŝi+1)
2 then the best estimator

of sn+1 is

ŝn+1 =

∫

~sk∈Un

sk+1p(sk+1|~sn)dsk+1 (67)

Thus we take those time delay embedding vector parameters as optimal which
minimize the locally constant prediction error i.e.

(m, τ ) = arg min
m∈Z,τ∈Z

∥
∥
∥~s − ~̂s

∥
∥
∥ . (68)

1.3.7 Transfer entropy significance testing

One of the problems that plague all transfer entropy estimators is bias. Either
systematic errors or statistical errors are both properties of estimators that
has to be dealt with. If we observe non-zero value of transfer entropy it
can be due to bias or variance and the transfer entropy estimator (65) is no
exception. Since Kraskov, Stögbauer, Grassberger method is non-parametric
one of the suggested statistical testing options is to use a permutation test
[13] [12].

We are going to test the null hypothesis that there is no relationship
between the source and target variables. First we have to come with surrogate
source variable under to assumption that the null hypothesis is true. One way
to do it is to by permuting y

(l)
t−1 in the joint probability space {xt,x

(k)
t−1,y

(l)
t−1}

thus destroying any predictive dependence of Y to X, and computing TYsur→X

of the surrogate source variable Ysur. Repeating this procedure multiple times
we can compute one-sided p-value of the test by the following equation:

P (TYsur→X ≥ TY →X) =
∑

Ysur :TYsur→X≥TY →X

P (Ysur). (69)

If the p-value is less 0.05 we reject the null hypothesis at the 5% significance
level.
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