Computational analysis of information-processing properties in an echo-state network

Miloslav Torda

Supervisor: prof. Ing. Igor Farkaš, Dr.

Previous results

Artificial neural networks:

- Task performance is maximized when the network is operating in a state near the edge of chaos, or stability (Bertschinger and Natschläger, 2004)
- Information measures are maximized near the edge of stability (Boedecker et. al., 2012)

Biological neural networks:

 Cortical circuits may be tuned to criticality for optimized behavior (Beggs, 2008)

Echo state network: Model

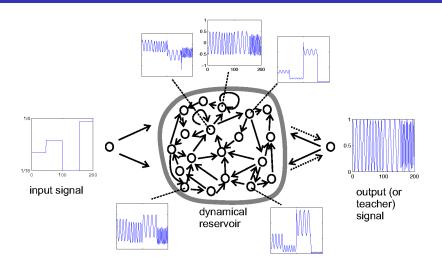


Figure: Herbert Jaeger (2007) Echo state network. Scholarpedia, 2(9):2330.

Echo state network

General model

Update equations:

$$\mathbf{x}(t) = \tanh(\mathbf{w}^{\text{in}} u(t) + \mathbf{W} \mathbf{x}(t-1))$$

 $\mathbf{x}(t) \in \mathbb{R}^{N_x}, \mathbf{w}^{\text{in}} \in \mathbb{R}^{N_x}, \mathbf{W} \in \mathbb{R}^{N_x \times N_x}$

Output layer:

$$\mathbf{y}(t) = \mathbf{W}^{ ext{out}}\mathbf{x}(t)$$
 $\mathbf{y}(t) \in \mathbb{R}^{N_{\mathbf{y}}}, \mathbf{W}^{ ext{out}} \in \mathbb{R}^{\mathbf{N}_{\mathbf{y}} imes \mathbf{N}_{\mathbf{x}}}$

Learning:

$$egin{aligned} \mathbf{W}^{\mathrm{out}} &= \mathbf{U}\mathbf{X}^+ \ \mathbf{X}^+ &= \mathbf{X}^{ op}(\mathbf{X}\mathbf{X}^{ op})^{-1} \end{aligned}$$

Information measures

Transfer entropy:

$$\begin{split} TE_{Y \to X}^{(k,l)} &= I(X_t : \mathbf{Y}_{t-u}^{(l)} \mid \mathbf{X}_{t-1}^{(k)}) \\ &= \sum_{\mathbf{x}_{t-1}^{(k)}, \mathbf{y}_{t-u}^{(l)}} p(\mathbf{x}_{t-1}^{(k)}, \mathbf{y}_{t-u}^{(l)}) \sum_{x_t} p(x_t \mid \mathbf{x}_{t-1}^{(k)}, \mathbf{y}_{t-u}^{(l)}) log_2 \frac{p(x_t \mid \mathbf{x}_{t-1}^{(k)}, \mathbf{y}_{t-u}^{(l)})}{p(x_t \mid \mathbf{x}_{t-1}^{(k)})} \end{split}$$

Active information storage:

$$\begin{aligned} AIS_{X}^{(k)} &= I(X_{t} : \mathbf{X}_{t-1}^{(k)}) \\ &= \sum_{x_{t}, \mathbf{x}_{t-1}^{(k)}} p(x_{t}, \mathbf{x}_{t-1}^{(k)}) log_{2} \frac{p(x_{t}, \mathbf{x}_{t-1}^{(k)})}{p(x_{t})(\mathbf{x}_{t-1}^{(k)})} \end{aligned}$$

where

$$\mathbf{X}_{t-1}^{(k)} = (X_{t-1}, X_{t-1-\tau_k}, X_{t-1-2\tau_k}, ..., X_{t-1-(k-1)\tau_k})$$

$$\mathbf{Y}_{t-u}^{(l)} = (Y_{t-u}, Y_{t-u-\tau_l}, Y_{t-u-2\tau_l}, ..., Y_{t-u-(l-1)\tau_l})$$

Information measures

Kraskov-Grassberger-Stögbauer estimators

Transfer entropy:

$$\widehat{\mathrm{TE}}_{Y \to X}^{(k,l)} = \Psi(K) + \langle \Psi(n_{\mathbf{x}_{t-1}^{(k)}} + 1) - \Psi(n_{\mathbf{x}_{t},\mathbf{x}_{t-1}^{(k)}} + 1) - \Psi(n_{\mathbf{x}_{t-1}^{(k)},\mathbf{y}_{t-1}^{(l)}} + 1) \rangle_{t}$$

where Ψ denotes the digamma function, $n_{(\cdot)}$ denotes the number of nearest neighbors in ϵ -hypercubes centered at (\cdot) in the marginal spaces where ϵ is given by the Chebyshev distance of the realization $(x_t, \mathbf{x}_{t-1}^{(k)}, \mathbf{y}_{t-1}^{(l)})$ at time step t to its Kth nearest neighbor in the joint space, and $\langle \cdot \rangle_t$ denotes the time-average.

Active information storage:

$$\widehat{\mathrm{AIS}}_X^{(k)} = \Psi(K) + \Psi(N) - \langle \Psi(n_{\mathbf{x}_{t-1}^{(k)}} + 1) + \Psi(n_{\mathbf{x}_t} + 1) \rangle_t$$

Estimating criticality

Maximum Lyapunov characteristic exponent

Let $\mathbf{x}(t+1) = \mathbf{f}(\mathbf{x}(t))$ be a discrete time dynamical system and $\mathbf{x}'(0) = \mathbf{x}(0) + \delta \mathbf{x}(0)$ be the initial conditions a trajectory $\mathbf{x}'(t)$ obtained by an infinitesimal displacement from $\mathbf{x}(0)$ such that $\gamma_0 = \|\delta \mathbf{x}(0)\| \ll 1$. Then the maximum Lyapunov characteristic exponent is

$$\lambda = \lim_{t \to \infty} \frac{1}{t} \ln \left(\frac{\gamma_t}{\gamma_0} \right) < \infty$$

where $\gamma_t = \|\mathbf{x}'(t) - \mathbf{x}(t)\|$.

$$\gamma_t \sim \gamma_0 \mathrm{e}^{\lambda t} \Rightarrow \begin{cases} \lambda > 0 & \text{sensitive to initial conditions} \\ \lambda \approx 0 & \text{edge of criticality} \\ \lambda < 0 & \text{sub-critical} \end{cases}$$

Experimental setup

- N=100 reservoir units
- single input unit
- output units
 - 120 for the MC task
 - single unit for the prediction task

$$\mathbf{w}_{i}^{\text{in}} \in \mathcal{U}(-0.1; 0.1), \forall j = 1, \dots, N$$

- 100 samples transients
- 1000 samples training
- 2000 samples testing

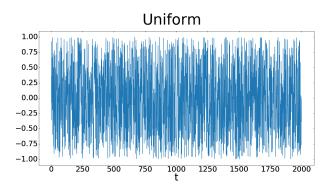
Prediction tasks:

NRMSE =
$$\sqrt{\frac{\langle (\hat{y}(t) - y(t))^2 \rangle_t}{\langle (y(t) - \langle y(t) \rangle_t)^2 \rangle_t}}$$

MC task:

$$MC = \sum_{q=1}^{q_{\text{max}}} MC_q = \sum_{q=1}^{q_{\text{max}}} \frac{\text{cov}^2(u(t-q), y_q(t))}{\text{var}(u(t)) \cdot \text{var}(y_q(t))}$$

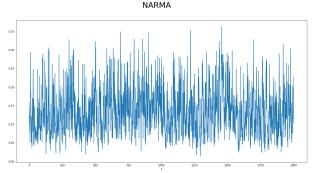
Benchmark tasks



Benchmark tasks

$$u(t+1) = 0.2 u(t) + 0.004 u(t) \sum_{i=0}^{29} u(t-i) + 1.5 q(t-29)q(t) + 0.001$$

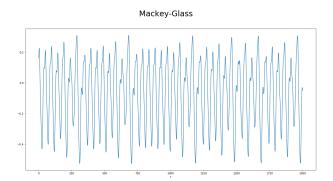
where $\forall t: q(t) \sim \mathcal{U}(0; 0.5)$



Benchmark tasks Mackey-Glass system

$$\frac{dy}{dt} = 0.2 \frac{y_{17}}{1 + y_{17}^{10}} - 0.1y$$

where u_{17} is the value of u at time t-17.

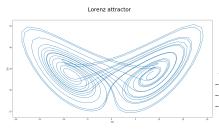


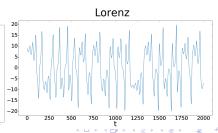
Benchmark tasks Lorenz system

$$\frac{dx}{dt} = 10(y - x)$$

$$\frac{dy}{dt} = x(28 - z) - y$$

$$\frac{dz}{dt} = xy - \frac{8}{3}z$$





Information-theoretical measures around criticality Experimental setup

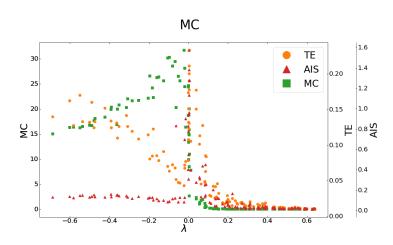
ESN:

- fixed wⁱⁿ
- $w_{ij}^{\text{res}} \in \mathcal{N}(0; \sigma)$ such that $\log \sigma \in [-1.5; -0.25]$ in 26 steps 5 instances per value σ

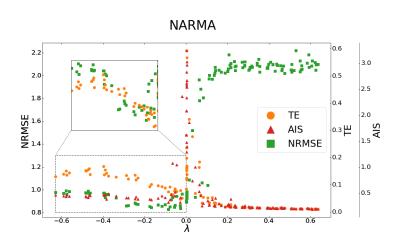
Information measures:

- TE
 - Target k = 2, $\tau_k = 1$
 - Source I = 1, $\tau_I = 1$
- AIS k = 2, $\tau_k = 1$
- 4-NN

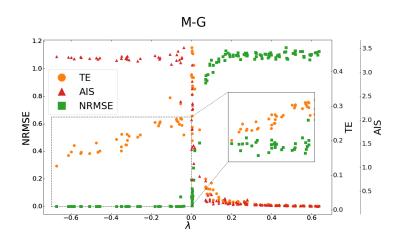
Information-theoretical measures around criticality MC task



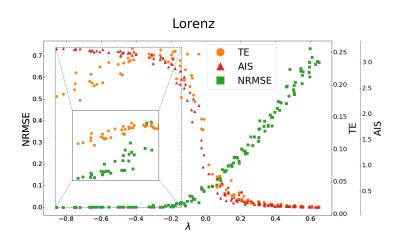
Information-theoretical measures around criticality NARMA task



Information-theoretical measures around criticality M-G task



Information-theoretical measures around criticality Lorenz task



Reservoir neuron signal embedding

Ragwitz-Kantz criterion:

$$(k, \tau) = \underset{k \in \mathcal{Z}, \tau \in \mathcal{Z}}{\operatorname{argmin}} \|\mathbf{x} - \widehat{\mathbf{x}}(k, \tau)\|$$

where

$$\mathbf{x}=(x_1,\ldots,x_n),\ \hat{\mathbf{x}}=(\widehat{x}_1,\ldots,\widehat{x}_n)$$

Locally constant predictor:

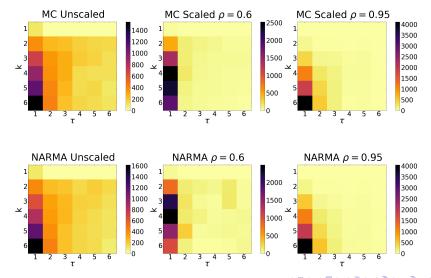
$$\widehat{\mathbf{x}}_{t+1} = \frac{1}{\operatorname{card}(\mathcal{U}_t)} \sum_{\mathbf{x}_t \in \mathcal{U}_t} \mathbf{x}_{t+1}$$

$$\mathcal{U}_t = \{\mathbf{x}_l : \|\mathbf{x}_l - \mathbf{x}_t\| \le \epsilon\}, \ \mathbf{x}_t = (\mathbf{x}_t, \mathbf{x}_{t-\tau_k}, \mathbf{x}_{t-2\tau_k}, ..., \mathbf{x}_{t-(k-1)\tau})$$

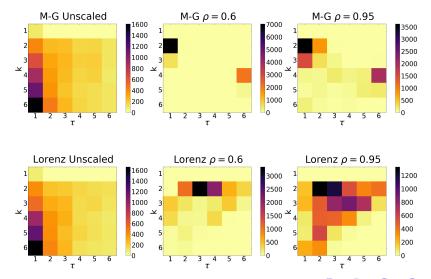
Reservoir neuron signal embedding: Experimental setup

- Ragwitz-Kantz search constrains:
 - k = 1, ..., 6
 - $\tau = 1, ..., 6$
- Reservoir spectral radius scalings:
 - Unstable: Unscaled
 - Stable: $\rho = 0.6$
 - Close to criticality: $\rho = 0.95$
- 100 instances per scaling and task

Reservoir neuron signal embedding: MC and NARMA tasks



Reservoir neuron signal embedding: M-G and Lorenz tasks



Reservoir neuron signal embedding

Most frequent (k, τ) pairs for each task and scaling

Task	MC		NARMA		M–G		Lorenz	
Scaling	k	au	k	au	k	au	k	au
init	6	1	6	1	6	1	6	1
ho = 0.6		1	4	1	2	1	2	3
ho=0.95		1	6	1	2	1	2	2

Experimental setup

ESN:

- 1 instance for all tasks and scalings

 - $w_j^{in} \in \mathcal{U}(-0.1; 0.1), \forall j = 1, ..., N$ $w_{ij}^{res} \in \mathcal{N}(0; 0.5), \forall i, j = 1, ..., N$
- Reservoir spectral radius scalings
 - Unstable: Unscaled
 - Stable: $\rho = 0.6$
 - Close to criticality: $\rho = 0.95$

Information measures:

- TE
 - Target determined by Ragwitz-Kantz criterion
 - Source I = 1, $\tau_{I} = 1$
- AIS determined by Ragwitz-Kantz criterion
- 4-NN

A closer look at information measures TE permutation test

$$H_0$$
: $T_{Y \rightarrow X} = 0$ vs. H_1 : $T_{Y \rightarrow X} > 0$

p-value:

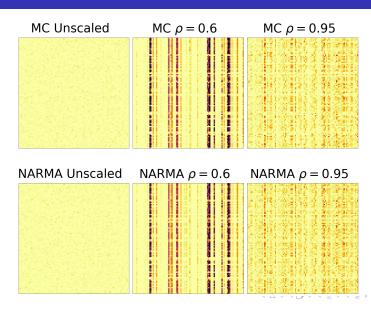
$$P(T_{Y_{SUr} \to X} \geq T_{Y \to X}) = \sum_{Y_{Sur}: \widehat{T}_{Y_{SUr} \to X} \geq \widehat{T}_{Y \to X}} P(Y_{Sur})$$

where Y_{sur} is permutaion of

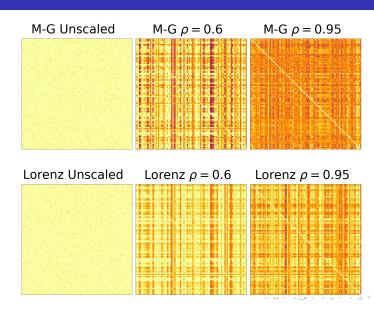
$$Y = (\mathbf{y}_n^{(k)}, \mathbf{y}_{n-1}^{(k)}, \dots, \mathbf{y}_1^{(k)}).$$

- lacktriangle p-value was computed from 100 $\widehat{T}_{Y_{sur}}$
- $\widehat{T}_{Y \to X} \leftarrow 0 \text{ if } P(T_{Y_{sur} \to X} \ge T_{Y \to X}) > 0.05$

TE matrices: MC and NARMA tasks



TE matrices: M-G and Lorenz tasks

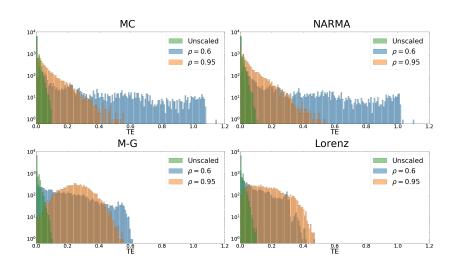


A closer look at information measures Relative entropy of TE

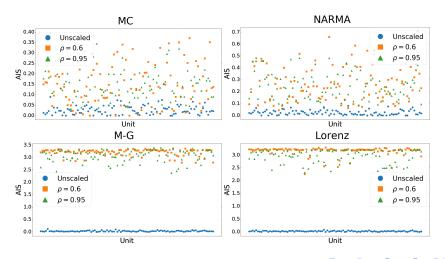
$$\begin{split} \left| \overline{H}(\mathrm{TE}_{\mathrm{RES}}^{(k,l)}) \right| &= \widehat{D_{\mathrm{KL}}}(\mathrm{TE}_{\mathrm{RES}}^{(k,l)} \, \| \, \mathcal{U}(0; \max \mathrm{TE}_{\mathrm{RES}}^{(k,l)})) \\ &= \ln(\max \mathrm{TE}_{\mathrm{RES}}^{(k,l)}) - \widehat{H_{\mathrm{KL}}}(\mathrm{TE}_{\mathrm{RES}}^{(k,l)}) \end{split}$$

where $\ln(\max TE_{RES}^{(k,l)})$ is the exact differential entropy of the uniform distribution with the support in $[0; \max TE_{RES}^{(k,l)}]$, $\widehat{H_{KL}}(\cdot)$ is the Kozachenko-Leonenko differential entropy estimator and $TE_{RES}^{(k,l)}$ is the distribution of the estimates of transfer entropies in the reservoir.

TE distribution



Active Information Storage



Quantification of used measures

MC task	Unscaled	$\rho = 0.6$	$\rho = 0.95$	NARMA	Unscaled	$\rho = 0.6$	$\rho = 0.95$
MC	0.06	17.8	32.8	NRMSE	2.143	0.98	0.83
Average TE	0.007	0.091	0.047	Average TE	0.007	0.087	0.052
Average AIS	0.027	0.146	0.151	Average AIS	0.023	0.267	0.247
Rel. entr. of TE	0.981	0.629	1.147	Rel. entr. of TE	1.086	0.783	1.174
LE	0.53	-0.52	-0.06	LE	0.52	-0.53	-0.062

Mackey-Glass	Unscaled	$\rho = 0.6$	$\rho = 0.95$	Lorenz	Unscaled	$\rho = 0.6$	$\rho = 0.95$
NRMSE	1.13	0.00025	0.00026	NRMSE	0.54	0.00012	0.0013
Average TE	0.007	0.154	0.248	Average TE	0.007	0.087	0.157
Average AIS	0.029	3.204	3.073	Average AIS	0.025	3.157	2.971
Rel. entr. of TE	0.266	0.386	0.587	Rel. entr. of TE	1.018	0.642	0.231
LE	0.53	-0.52	-0.062	LE	0.52	-0.74	-0.28

Conclusion

- Two complexity classes in tested tasks
 - stochastic: MC/NARMA benefit from criticality
 - deterministic: M–G/Lorenz do not benefit from criticality
- Information measures are maximized at phase transition from stable to unstable regime
- Between complexity classes: increase in performance is associated with increase in global TE and AIS, and decrease of relative entropy of TE
- Within tasks: in stable regions there seems to be an inverse relationship between performance and global TE.
- Higher information flow does not mean better performance.
- Task specific

THANK YOU