Close lattice packings

Problem statement

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Find out how "densely" a large number of objects can be packed together.

Alternatively, what is the greatest number of objects that can be packed in a predefined region.

Motivation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Crystal structure prediction

KORKARRA ERKER SAGA

Packings of molecules in crystals

J. T. A. Jones et al., Modular and predictable assembly of porous organic molecular crystals, Nature vol. 474, p.

367–371, 2011.

Crystal structure prediction

Observation

Crystals with lowest energy seem to form close packings.

G. M. Day, A. I. Cooper, Energy-Structure-Function Maps: Cartography for Materials Discovery, Adv. Mater.,vol.

30, p. 1704944, 2018.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ \mathbb{B} 2990

Crystal structure prediction Current CSP

KORK ERKER ADAM ADA

- optimisation of lattice energy based on space group symmetries
- energy calculations based only on intermolecular interactions
- DFT is used for more precise energy calculations

Crystal structure prediction

Lennard-Jones potential

 2990

$$
V_{\text{LJ}}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]
$$

- ϵ Lennard-Jones potential well depth
- σ the finite distance at which the inter-particle potential is zero
- \bullet \prime the distance between the particles

Crystal structure prediction

Lennard-Jones potential stationary points

$$
V_{\text{LJ}} = 4\epsilon \sum_{i < j}^{N} \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]
$$

TABLE IV. Number of saddle points of each index for LJ_N clusters. The numbers in italics are likely to be far from complete.

	Stationary point index															
N	θ		$\overline{2}$	3	4	5	6		8	9	10	11	12	13	14	15
$\overline{4}$			$\overline{\mathbf{c}}$			Ω	$\mathbf{0}$									
		\mathcal{L}	4	6	6	\mathcal{L}		0								
6	\mathfrak{D}	3	13	24	30	26	16			Ω						
	4	12	44	98	168	190	168	101	45	11		Ω				
8	8	42	179	494	1000	1458	1619	1334	852	388	125	26		θ		
9	21	165	867	2820	6729	12 09 3	16 29 2	16578	13 2 2 6	8286	4053	1444	376	56		Ω
10	64	635	4074	16407	46 277	97 183										
11	170	2424	17 109	47068												
12	515	8607	27957													
13	1509	28 7 5 6	88079													

J. P. K. Doye and D. J. Wales, Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooled

liquids, The Journal of Chemical Physics, Vol. 116, pp. 3777–3788, 2002.

Crystal structure prediction The idea

KORKARYKERKER POLO

Use computational geometry, specifically close packings of convex/star convex sets, to find densest crystal structures or to remove from CSP those structures that are not packet closely together and thus speed up CSP and aid new crystal discovery.

CC3 is approximated by an octahedron

J. T. A. Jones et al., Modular and predictable assembly of porous organic molecular crystals, Nature vol. 474, p.

367–371, 2011.

Mathematics

18th Hilbert problem

KORKARYKERKER POLO

How can one arrange most densely in space an infinite number of equal solids of given form, e.g. spheres with given radii or regular tetrahedra with given edges (or in prescribed position), that is, how can one so fit them together that the ratio of the filled to the unfilled space may be as great as possible?

History

Kロトメ部トメミトメミト ミニのQC

Kepler conjecture **Statement**

KORK EXTERNE PROVIDE

No packing of congruent balls in Euclidean three-space has density greater than that of the face-centered cubic packing (Johannes Kepler 1611).

Kepler conjecture Optimum packing

FCC and HCP lattice packings of spheres

Kepler conjecture Results

- in 1831 Carl Friedrich Gauss proved to be true for lattice packings with density of $\frac{\pi}{3\sqrt{2}}$.
- in 2005 general proof of Thomas C. Hales was accepted to Annals of mathematics.

Thue's theorem **Statement**

Kロトメ部トメミトメミト ミニのQC

Regular hexagonal packing is the densest circle packing in the plane.

Thue's theorem **Results**

- in 1773 Joseph Louis Lagrange proved to be true for lattice packings with density of $\frac{\pi}{\sqrt{12}}$.
- in 1940 first rigorous proof by László Fejes Tóth for the general case.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Packing and covering Definition

KORK ERKER ADAM ADA

• Covering:

the system of sets S_1, S_2, \ldots is said to cover the set S, if

 \bigcup $S_i \supset S$ i

• Packing

the system of sets S_1, S_2, \ldots is said to form a packing into the set S, if

$$
S_i \cap S_j = \emptyset \ (i \neq j)
$$

$$
\bigcup_i S_i \subset S
$$

Packing and covering Special case

KORKARYKERKER POLO

- $S = \mathbf{E}^n$
- S_1, S_2, \ldots is finite collection or countably infinite of translates and of a single compact convex set V . (Translate of V : set of all points of the form $v + a$, where $v \in V$, and a is a fixed point or vector)

Lattice packings Lattice

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let a_1, a_2, \ldots, a_n be *n* linearly independent vectors in E^n ,

$$
\Lambda=\{u_1\textbf{a}_1+u_2\textbf{a}_2+\ldots+u_n\textbf{a}_n\mid u_i\in\mathbb{Z}\}
$$

is called a lattice.

Lattice packing density

 $\mathcal{K}_{\boldsymbol{L}}=\{\boldsymbol{V}+\mathbf{b}_i\mid \mathbf{b}_i\in \Lambda\}$ - collection of translates of a set \boldsymbol{V}

If V is a bounded set with positive measure and \mathcal{K}_I is the collection of translates of V of a lattice Λ then we can define " density" K_L

$$
\rho\left(\mathcal{K}_L\right) = \frac{\text{vol}\left(V\right)}{|\text{det}\left(\Lambda\right)|}
$$

where det (Λ) is the determinant of the generators of lattice Λ .

Lattice packing density

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

If K_L forms a *packing* then

 $\rho(K_L) \leq 1$

If K_L forms a covering then

 $\rho(K_L) \geq 1$

Example Cubic honeycomb

イロト イ団 トイミト イミト 一毛

 2990

When V is a cube we have a tiling and

$$
\rho\left(\mathcal{K}_L\right)=1
$$

Example

KOK KØK KEK KEK EL DAG

What is the maximum packing density of balls in $\mathsf{E}^1?$

Bodies V for which maximum general packings are known

C. D. Toth, J. O'Rourke, J. E. Goodman eds., Handbook of Discrete and Computational Geometry 3rd Edition,

CRC Press 2017.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

d-dimensional balls for which maximum lattice packings are known

C. D. Toth, J. O'Rourke, J. E. Goodman eds., Handbook of Discrete and Computational Geometry 3rd Edition,

CRC Press 2017.

Bodies V in E^3 for which maximum lattice packings are known

C. D. Toth, J. O'Rourke, J. E. Goodman eds., Handbook of Discrete and Computational Geometry 3rd Edition,

CRC Press 2017.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The densest lattice packing with the tetrahedron

I. Bárány,K. J. Böröczky, G. Fejes Tóth,J. Pach, J eds. Geometry - Intuitive, Discrete, and Convex—A Tribute to

László Fejes Tóth. Berlin: Springer, 2014.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Packing lattice of a difference body

Minkowski sum and difference body

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Minkowski sum

$$
A+B=\{a+b: a\in A, b\in B\}
$$

for sets A and B .

Difference body of A

$$
D(A)=A+(-A)
$$

for set A.

Packing lattice of a difference body

Example of difference bodies

 $\mathbf{A} \equiv \mathbf{A} + \math$

 2990

Fig. 5. Cones and their difference bodies: the circular cone and the square pyramid I. Bárány,K. J. Böröczky, G. Fejes Tóth,J. Pach, J eds. Geometry - Intuitive, Discrete, and Convex—A Tribute to László Fejes Tóth. Berlin: Springer, 2014.

Packing lattice of a difference body

Minkowski's observation

KORKARYKERKER POLO

Lemma

Let a_1 and a_2 be two distinct points and let V be a convex set. Then $(V + a_1) \cap (V + a_2) \neq \emptyset$ if and only if

$$
\left(\frac{1}{2}D(V)+a_1\right)\cap\left(\frac{1}{2}D(V)+a_2\right)\neq\emptyset.
$$

From this lemma it follows that:

 Λ is a packing lattice of V \Leftrightarrow Λ is a packing lattice of $\frac{1}{2}D\left(V\right)$.

Appendix

Formal definition of packing and covering density, and supporting material for the simple proof of Thue's theorem.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Density

Inner and outer density

$$
\rho_{+}\left(\mathcal{K},\mathcal{C}\right) = \frac{1}{\mu\left(\mathcal{C}\right)} \sum_{\substack{(V+\mathbf{a}_{i}) \cup \mathcal{C} \neq \emptyset}} \mu\left(V+\mathbf{a}_{i}\right)
$$
\n
$$
\rho_{-}\left(\mathcal{K},\mathcal{C}\right) = \frac{1}{\mu\left(\mathcal{C}\right)} \sum_{\substack{(V+\mathbf{a}_{i}) \subset \mathcal{C}}} \mu\left(V+\mathbf{a}_{i}\right)
$$

- ${a_i}$ sequence of points
- $K = \{V + a_i\}$ collection of translates of V
- C cube with edge length s centred at some point C
- $\mu(\cdot)$ Lebesgue measure

Density Upper and lower density

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Upper density

$$
\rho_+(\mathcal{K}) = \limsup_{s(\mathcal{C}) \to \infty} \rho_+(\mathcal{K}, \mathcal{C})
$$

Lower density

$$
\rho_{-}\left(\mathcal{K}\right)=\liminf_{s(C)\to\infty}\rho_{-}\left(\mathcal{K},C\right)
$$

Density

KORK ERKER ADAM ADA

Packing and covering density

Packing density of V

$$
\delta(V)=\sup_{\mathcal{K}}\rho_+(\mathcal{K})
$$

supremum over all systems K of translates of V, which form packings into the whole space.

Covering density of V

$$
\vartheta(V)=\inf_{\mathcal{K}}\rho_{-}\left(\mathcal{K}\right)
$$

infimum over all systems K of translates of V, which form a covering of the whole space.

Density Packing and covering density

KORK ERKER ADAM ADA

Theorem If V is bounded with a positive measure, its packing and covering densities satisfy

 $\delta(V) \leq 1 \leq \vartheta(V)$.

Lattice packing density

$$
\mathcal{K}_L = \{ V + \mathbf{b}_i \mid \mathbf{b}_i \in \Lambda \}
$$
 - system of translates of a set V

Lattice-packing density of V

$$
\delta_L(V) = \sup_{\mathcal{K}_L} \rho_+(\mathcal{K}_L)
$$

 \mathcal{K}_L is a lattice-packing into the whole space.

Periodic packing density

KORKAR KERKER SAGA

$\mathcal{K}_{P} = \{ V + c_{i} + b_{i} \}$

- $c_j \in E^n$ for $j = 1, \ldots, N$
- \bullet **b**_i point of the lattice of all points that have integral multiples of a positive constant s for coordinates.
- s is the period of a periodic system \mathcal{K}_{P} .

Periodic packing density of V

$$
\delta_P(V)=\sup_{\mathcal{K}_P}\rho_+\left(\mathcal{K}_P\right)
$$

 \mathcal{K}_P is a periodic packing into the whole space.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Invariance of the packing density

Theorem

Let V be a bounded set with a positive measure. Let T be a non-singular affine transformation. Then

$$
\delta(\mathsf{TV}) = \delta_P(V) = \delta(V),
$$

$$
\delta_L(\mathsf{TV}) = \delta_L(V).
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem

Let V be a bounded set with positive measure. Let $K₁$ be the system of translates of V of a lattice Λ. Then

$$
\rho_+(\mathcal{K}_L) = \rho_-(\mathcal{K}_L) = \frac{\mu(V)}{|\text{det}(\Lambda)|}
$$

where det (Λ) is the determinant of the generators of lattice Λ .

On the simple proof of Thue's theorem

Delunay triangulation of a circle configuration

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

On the simple proof of Thue's theorem

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @