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1 Motivation

The aim of this project is to aid crystal structure prediction (CSP) computations
using only geometry. Present day CSP relies on finding structures with low
energies, as those are the ones that are most likely to be stable when synthesized.
The search for possible crystal structures involves minimizing energy potentials
subject to periodic boundary conditions. The energy formulae vary from simple
and fast potential approximations, for example force field methods, to precise
but computationally demanding density functional theory. The optimization
itself is performed usually with Monte Carlo simulation methods with the help
of some theoretical knowledge about a molecule, for example possible space
group symmetry configurations that a particular molecule can take. In practice
this involves searching for minima on a complex energy landscape. For example
in case of Lennard–Jones potential a system of 13 particles has approximately
1509 local minima, 28756 stationary points of index 1 and 88079 stationary
points of index 2 [1].

Dense packings tend to have lower energies [2], thus instead of looking for low
energy structures we can work with a geometrical representation of a molecule
and find dense packed configurations. These dense packed configurations can
be then used as a starting position in the usual CSP procedures as opposed
to a completely random starting configuration. The estimate is that finding
geometrically dense crystals as starting positions could accelerate CSP by two
orders of magnitude.

2 Theoretical background

2.1 History of the packing problem

The packing problem is well studied and generally considered to be a hard prob-
lem. Stated as David Hilbert’s 18th problem:

”How can one arrange most densely in space an infinite number of
equal solids of given form, e.g. spheres with given radii or regular
tetrahedra with given edges (or in prescribed position), that is,how
can one so fit them together that the ratio of the filled to the unfilled
space may be as great as possible?” [3]

The first mention of this problem is from 1611 by Johannes Kepler who con-
jectured that the densest packing of congruent balls is that of a face–centered–
cubic latice. This conjecture was proved by Thomas C. Hales [4] in 2005 by the
proof of exhaustion.

Since Kepler, the packing problem has been studied extensively. It does seem
however that the 18th Hilbert problem is actually a collection of problems. An
overview of results to current date can be found in review works of Tóth [5] or
Bezdek and Kuperberg [6].
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2.2 Problem statement

For the purpose of stating the problem of our interest we will outline the concept
of packing and it’s two different simplifications, namely lattice packing and
periodic packing and their respective densities. We will follow Rogers [7].

Definition. The system of sets S1, S2, . . . is said to cover the set S, if

Si ∩ Sj = ∅ (i 6= j)⋃
i

Si ⊂ S

i.e if no two of the sets S1, S2, . . . have any element in common and each
element of the sets S1, S2, . . . belongs to S.

We will identify the set S with the Euclidean space of dimension n i.e.
S = En. In our specific setting we are interested only in n = 3. S1, S2, . . . will
be a finite collection or countably infinite of translates of rotations of a single
set K. By translates of K we mean set of all points k + a, where k ∈ K, and
a is a fixed point or vector and by rotations we mean set of all points Rk for
k ∈ K and R ∈ SO(n) = {A ∈ Rn×n : ATA = I, detA = 1}.

Now we can define packing density. Let {ai} be a sequence of points, {Rj :
Rj ∈ SO(n)} a collection of rotations, K a set with finite volume vol(K), C a
cube with the edge length c and system of sets K = {RjK + ai} that forms a
packing.

Definition. The density ρ(K) of the packing K is

ρ(K) = lim sup
c→∞

ρ(K, C)

where

ρ(K, C) =
1

vol(C)

∑
(RjK+ai)∩C 6=∅

vol(RjK + ai).

It can be easily proved that 0 ≤ ρ(K) ≤ 1.
Arising from the crystallographic applications we will be working only with

subset of packings, specifically lattice packings. Let a1,a2, . . . ,an be n linearly
independent vectors in En. The set Λ = {u1a1 + u2a2 + · · ·+ unan | ui ∈ Z} is
called a lattice.

Definition. A lattice packing KL is a system of translates of a given set K i.e.

KL = {K + ai | ai ∈ Λ}

if it is a packing into the whole space.
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It can be shown that in the case of lattice packing KL of a set K the density
takes the following form

ρ(KL) =
vol(K)

|det(Λ)|
where det(Λ) is the determinant of the generators of the lattice Λ.

Finally we come to the concept of a periodic packing which is going to
be our main area of interest. Let a1,a2, . . . ,aN be a set of points and let
b1,b2, . . . ∈ Λ and R1, R2, . . . , RN ∈ SO(n).

Definition. A periodic packing KP is a system of translates and rotations of a
given set K, that is

KP = {RiK + ai + bj | i = 1, 2, . . . , N ; j = 1, 2, . . . }

if it is a packing into the whole space.

Similarly to the case of a lattice packing, it can be shown that periodic
packing density can be expressed in the following form

ρ(KP ) =
Nvol(K)

|det(Λ)|
(1)

where as previously det(Λ) denotes the determinant of the generators of the
lattice Λ.

Given the definitions above, the problem of our interest is called periodic
packing problem. Precisely find a periodic packing Kmax of N congruent copies
of a given set K such that

Kmax = argmax
KP

ρ(KP ).

3 Preliminary results

In this section we present two approaches we have already taken in an attempt
to solve the periodic packing problem including modelling of molecules. One is
a Monte-Carlo molecular dynamics simulation and the second one is a mathe-
matical programming formulation.

3.1 Monte-Carlo molecular dynamics simulations

The first idea was to try a simulated annealing method to find the densest
periodic packings. This approach is well explored, for example by Torquato and
Jiao [8] or by Damasceno et. al. [9]. Y. Jiao was was kind enough and provided
us with a working version of the algorithm from [8] written in C++. Based on
the Torquato–Jiao algorithm we implemented our version in Julia programming
language [10].
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3.1.1 Torquato-Jiao packing algorithm

The input for the algorithm is a representation of the polytop we want to pack
by its vertices, edges and faces. Then number of copies of the shape we want to
pack N , and initial configuration of the system. The initial configuration is given
by the unit cell basis vectors, N coordinates of the centres of the polytops to be
packed in the standard basis, and coordinates of the vertices of the N shapes
centred and rotated around the origin. The output is in the form similar to the
initial configuration input. That is the unit cell basis vectors, N coordinates of
the centres of the polytops in the standard basis, and coordinates of the vertices
of the N polytops centred and rotated around the origin.

The algorithm implements periodic boundary conditions [11]. The basic idea
of the algorithm is at every iteration to take every polytop in the unit cell and
attempt to either rotate it or to move it, and then attempt to either shrink or
expand the unit cell. The only requirement is that the centres of the polytops
are contained in the unit cell and that the polytops do not overlap. From the
expression of the periodic packing density (Equation (1)) in can be seen that
shrinking of the unit cell is the only thing that actually changes the density and
we are in practice trying to find the unit cell with the minimal determinant.

The rotations and motions are performed randomly. We randomly choose
if a particle gets rotated or moved and then perform either a rotation around
a randomly chosen axis by a small random angle θ, or a motion by a small
random displacement ∆. As mentioned before the algorithm allows the unit
cell to expand thus allowing the hill climbing in the optimisation procedure.
The hill climbing is governed by a simulated annealing schedule i.e

p(Kt ← K) =

{
1 if ∆ρ > 0

e
−∆ρ
Tt if ∆ρ ≤ 0

where ∆ρ = ρ(K)− ρ(Kt). This simulated annealing procedure was not part of
the original Torquato-Jiao algorithm and was added by us.

The Torquato-Jiao algorithm is built for simulations of large number of (N >
1000) particles and to speed up overlap checking the authors implement near-
neighbour lists, where the unit cell is divided into smaller parts and a for every
particle a list of the nearest neighbours is stored in the memory. To check
for overlap for a given polyhedron it’s enough to check it’s nearest neighbour.
This has some disadvantages in smaller settings (N < 10), and because of this
disadvantages we do not use near-neighbour lists in our version of the algorithm
and at every step we do a complete overlap check including neighbouring unit
cells.

The actual overlap check between two particles is done via separating axis
theorem which is a consequence of hyperplane separating theorem by Minkowsky [12].

Theorem. Two convex polyhedra do not intersect if and only if there exists a
separating plane which is either parallel to a face of one polyhedron or which is
parallel to at least one edge of each polyhedron.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: (a) Initial packing of 8 tetrahedra in a unit cell and (b) the output of
packing algorithm. (c) As (a) but with 27 unit cells displayed and (d) the output
of the packing displayed in 27 unit cells. (e) Initial packing of 8 octahedra in
a unit cell and (f) the output of packing algorithm. (g) Initial configuration
displayed in 27 unit cells and (h) the output packing displayed in 27 unit cells.

Axis normal to a separating plane is called a separating axis. If the pro-
jections of the polyhedra on to the separating axis do not intersect then the
polyhedra do no overlap. The use of separating axis theorem limits the use of
the algorithm only to convex polyhedra.

We tested our version of the Torquato–Jiao algorithm to pack regular tetra-
hedra and octahedra. The results from one of the experiments of packing 8
tetrahedra and 8 octahedra in a unit cell are presented in Figure 1. The ini-
tial density of the tetrahedra packing was 0.06415 and the output density was
0.67045. Currently the best achieved density of tetrahedra packing is 0.856347
[13] and the best upper bound is 2.6× 10−24 below 1 [14].

In the case of octahedra the initial density was 0.1667 and the output density
was 0.9178. For comparison, Minkowsky showed that the optimal lattice packing
of octahedra is 0.9474 [6]. Torquato-Jiao conjecture that the general optimal
packing density for centrally symmetric platonic solids is their respective lattice
packing [8].

3.1.2 Pentacene modeling and packing

In the next step we moved to applying our packing algorithm to pack molecules
of pentacene. One problem is that pentacene is a planar structure see Figure
2a.

To create a 3 dimensional shape around every atom of pentacene we put 14
points placed uniformly on a sphere with the radius 0.5573/2 (Figure 2b). By
doing this we created a point cloud, we then computed a convex hull of this
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(a) (b) (c)

(d) (e)

Figure 2: (a) Centers of atoms of pentacene. (b) 14 points placed on a sphere
with radius 0.5573/2. (c) Convex hull of the resulting point cloud with centres
of pentacene atoms inside (red).(d) A model of the pentacene crystal structure
from the CSP dataset. (e) The crystal structure where the minimum distance
between two pentacene molecules is attained.

point cloud and finally got a polyhedron defined by a triangulation with 58 ver-
tices, 112 edges, 168 faces (Figure 2c). The volume of the polyhedron is 48.237.
The radius of the sphere on which we put the points was computed from a crys-
tal structure prediction dataset by Campbell et.al [15]. The dataset contained
586 pentacene structures. Out of these we have computed minimum euclidean
distance between pentacene molecules within every crystal structure (0.5573).
An examples of pentacene crystal structures from the mentioned dataset is pre-
sented in Figure 2d and the crystal structure with the minimum distance in
Figure 2e.

We proceeded to pack the pentacene representation using the Torquato–
Jiao algorithm. We packed 1,2,4,8 and 54 pentacene shapes subject to periodic
boundary conditions with random initial configurations. The output of the al-
gorithm is presented in Figure 3. In the case of 1 pentacene shape the output
density was ρ ≈ 1 (Figure 3a), in the case of 2 pentacene shapes ρ ≈ 1 (Fig-
ure 3b), in the case of 4 pentacene shapes ρ = 0.8093 (Figure 3c), in the case
of 8 pentacene shapes ρ = 0.6940 (Figure 3d) and in the case of 54 pentacene
shapes ρ = 0.1521 (Figure 3e). We observe an inverse relationship between
numbers of pentacene shapes to be packed end the output of the algorithm.
The more shapes the more likely is for the algorithm to converge to a jammed
configuration. This is probably due to the flat shape of the pentacene shape.

3.2 Mathematical programming formulation

As another approach we formulated the packing problem as a mathematical
optimization problem. Based on Chernov et. al. [16] we built a mathematical
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(a) (b) (c)

(d) (e)

Figure 3: Output configurations of pentacene packing for (a) 1, (b) 2, (c) 4, (d)
8 and (e) 54 pentacenes displayed in a single unit cell and 27 unit cells.

model of periodic packing of N 2-simplices in a unit cell. The choice of packing
a 2-simplex was for it’s simplicity and easiness of testing the model. We now
that the 2-simplex tiles R2, i.e. ρ = 1. The model can be easily extended to an
euclidean space of any dimension and any convex polytop.

3.2.1 The model

Let Λ =
{
p1u1 + p2u2 | p1, p2 ∈ [0, 1];u1, u2 ∈ R2

}
be a unit cell defined by the

set of generators Λ =

(
u11 u12
u21 u22

)
and T0 =

{
φ1
(
1
0

)
+ φ2

(
0
1

)
−
( 1

3
1
3

)
| 0 ≤ φ1 + φ2 ≤ 1

}
be a 2-simplex centred at the origin. Next we define N copies of T0 translated
by ck ∈ R2 and rotated by Rk ∈ SO(2)
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Tk =
{

Λck +Rkp0 | p0 ∈ T0
}

where ck =
(
xk

yk

)
and Rk =

(
cos θk − sin θk
sin θk cos θk

)
for k = 1, 2, . . . , N and θk ∈

[0, 2π]. For the purpose of stating the constraints of the problem in the form of
equations we need to define translates T i,j

k of Tk in the neighbouring unit cells

T i,j
k =

{
Λ

(
i

j

)
+ pk | pk ∈ Tk

}
for i, j ∈ {−2,−1, 0, 1, 2}.

The packing problem can be then stated as

min vol(Λ) = min det(Λ) = minu11u22 − u12u21 (2)

as a function of 10 variables i.e u11, u22, u12, u21, c1, c2, θ1, θ2, subject to

ci ∈ [0, 1]× [0, 1]; i = 1, 2, . . . , N (3)

Int(Tk) ∩ Int(T i,j
l ) = ∅ (4)

where Int(·) is the interior of a set, k, l = 1, 2, . . . , N , i, j = −2,−1, 0, 1, 2,
excluding the case when l = k, i = 0, j = 0. The objective function is in fact a
homogeneous polynomial of degree 2. The constrains mean that only centres of
the triangles have to be contained inside the unit cell and the triangles in the
unit cell do not intersect each other and their copies in neighbouring unit cells.

According to the hyperplane separation theorem stated before if two sim-
plexes do no overlap then the separating hyperplane is defined by at least one of
the edges of the simplex. Since all the simplexes are rotations and translations
of T0 the possible separating hyperplanes are defined by

αhx+ βhy + γh = 0 (5)

for h = 1, 2, 3 where αh, βh, γh are defined by the edges of T0.
For intersection check of two simplexes it’s enough to check if the vertices

of one simplex do not lie inside the other simplex. To formalize this, let
(
x0

y0

)
∈

Vert(T0) where Vert(T0) is the set of vertices of T0. Then the vertices of Tk are

defined by
(x0,0
k

y0,0
k

)
= Λck +Rk

(
x0

y0

)
and vertices of T i,j

l by
(xi,jl
yi,jl

)
= Λ

(
cl +

(
i
j

))
+

Rl

(
x0

y0

)
. Let us denote

(x̃0,0
k

ỹ0,0
k

)
the vertices of Tk in the coordinate system of T i,j

l ,

that is (
x̃0,0k

ỹ0,0k

)
= R−1l

[(
x0,0k

y0,0k

)
− Λ

(
cl +

(
i

j

))]
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(a) (b) (c)

Figure 4: Output configurations of genetic algorithm for the packing of (a) 2,
(b) 4, (c) 6 simplexes in a unit cell.

and
(x̃i,jk
ỹi,jk

)
the vertices of T i,j

l in the coordinate system of Tk, precisely

(
x̃i,jl
ỹi,jl

)
= R−1k

[(
xi,jl
yi,jl

)
− Λck

]
.

This way we can state an equivalent definition of the intersection con-
straint (4),

Int(Tk) ∩ Int(T i,j
l ) = ∅

⇔ min
i,j,k,l

max{ max
1≤h≤3

min
(x0
y0

)∈Vert(T0)
v0,0h,k, max

1≤h≤3
min

(x0
y0

)∈Vert(T0)
vi,jh,l} ≥ 0

where

v0,0h,k = αhx̃
0,0
k + βhỹ

0,0
k + γh

vi,jh,l = αhx̃
i,j
l + βhỹ

i,j
l + γh

and αh, βh, γh are the coefficients of the separating hyperplanes of T0 defined
in Eq. (5). As in the previous formulation of the constraint the case l = k, i =
0, j = 0 has to be excluded. The intersection constraint this way becomes a
continuous and piecewise differentiable function of 6 variables. It’s not difficult
to translate this problem to a mixed integer nonlinear programming formulation
by introducing artificial integer variables.

3.2.2 The experiments

We tested our simplex packing model first by using Matlab’s Global optimiza-
tion toolbox genetic algorithm and next by using Matlab’s Optimization toolbox
nonlinear constrained solver. Using the genetic algorithm we tested instances
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(a) (b) (c)

Figure 5: Best solutions found using nonlinear constrained optimization for (a)
3, (b) 4, (c) 4 simplexes in a unit cell. For each case initial (upper image) and
output (lower image) configurations are displayed

with 2,4 and 6 simplexes in a unit cell. Results from the experiments are pre-
sented in Figure 4. The only case when the algorithm found an optimal solution
was in the case of packing 2-simplexes (Figure 4a). In case of 4 simplexes the
output density was 0.6715 (Figure 4b) and in the case of 6 simplexes 0.7534.

The experiments using nonlinear constrained optimization were performed
for packing of 2,3,4,5 simplexes in a unit cell. Matlab’s optimization toolbox
nonlinear constrained solver uses interior point method to find optimal solutions.
We provided the solver with the gradient of the objective function and since
the intersection constraint is nondifferentiable we used the BFGS algorithm for
Hessian approximation of the constraints that is already built in the nonlinear
constrained optimization solver. For every setting we performed 100 runs with
random initial rotations.

Results of the best solutions are presented in Figure 5. The setting with 2
simplexes generated although optimal solutions but with degenerate unit cells
i.e det(Λ) ≈ 0. Because of this we do not present this setting. In the case
packing 3 simplexes, 39 runs exited with a feasible solution. Mean density in
the feasible solution cases was 0.5827 and variance 0.0197. The best case had
density 0.8118 (Figure 5a). In the 4 simplex setting out of 100 runs 20 resulted
in feasible solutions. Mean density in the feasible solution cases was 0.5850 and
variance 0.0127. The best case had density 0.7959 (Figure 5b). Only 9 out of
100 runs exited with a feasible solution in the 5 simplex case. Mean density in
the feasible solution cases was 0.5637 and variance 0.0111. The best case had
density 0.7246 (Figure 5c).
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(a) (b)

Figure 6: (a) convex hull and (b) α-shape of an organic cage molecule crystal
structure.

4 Future work

From the preliminary results presented, neither approach works particularly
well. The Monte–Carlo algorithm seems works for simple polyhedra, for exam-
ple octahedra, but struggles with more complicated shapes, as is the case of
pentacene representations where the packing configurations are obvious. The
experiments with the mathematical programming formulation of the packing
problem (Equation (2)) suggest similar conclusions. In both, genetic algorithm
and nonlinear constrained solver applications, the algorithms struggle even in
a simple tasks of packing simplexes. More over in case of the nonlinear con-
strained optimization the solutions depend on the initial configuration, where
adding more simplexes to the problem decreases the chance of even finding a
feasible solution. These observations suggest a complicated energy landscape (if
we use the language of energy minimization) with many local minima separated
by high energy barriers. Because of this a more analytical approach needs to
be taken, although it has been clear for a long time that the packing prob-
lem can not be solved entirely analytically and combination of analytical and
computational methods need to be employed.

An alternative approach to periodic packing problem is to glue together
shapes in the unit cell and this way to convert a periodic packing problem to
a lattice packing problem. This idea was used for example by Chen et. al. [13]
where the authors found the densest known packings of tetrahedra by gluing
together two tetrahedra and creating tetrahedra dimers.

The gluing is going to be done by attaching congruent faces of the shapes.
This way we encounter a combinatorial problem, since for example the pen-
tacene representation has 168 faces (Figure 2c) it would be beneficial to trim
the possible glued shapes that we need to find dense lattice packing for.

Second part of the gluing method is to find optimal lattice packings of glued
shapes. By gluing together shapes we are very likely going to get noncovex
shapes. This way we are presented with a problem of lattice packing of noncon-
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vex sets. To our knowledge this area is not very well explored.
To find optimal packings of nonconvex sets is important for us also from

another perspective. With the application of packing problems to crystal struc-
ture prediction we want to move beyond packing pentacene. With the use of
α-shapes [17] we can create geometric representations of molecules, possibly
nonconvex, that can be packed. An example is presented in Figure 6 where
the convex hull (Figure 6a) and α-shape (Figure 6b) for some α of an organic
cage molecule crystal by Jones et. al. [18] are displayed. The convex hulls of
the molecules overlap but the α-shapes do not and so we need to work with
α–shapes which are non-convex.

One of the useful theoretical challenges is to find a good upper bound for
packings of nonconvex sets to guide us as to how close are we to an optimum
packing. Another challenge that needs to be addressed concerns the packing
of pentacene. We need to complicate the geometric model. Pentacene has
four main packing types (see Campbell et. al. [15]) arising from intermolecular
interactions. These interactions need to be integrated into the packing model
for the model to be more plausible.
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