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Motivation
Mathematical crystal

• A structure built of one or a few different kinds of discrete units,
arranged in more or less modular fashion

• In our case the module is a space filling polyhedron.

• A model of a real crystal.

Figure: Left: Cubic module. Right: Cubic crystal
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Motivation
Crystal structure prediction

• The calculation of crystal structures of solids from first principles
(QED).

• Calculations are based on
• Force field methods.
• Density functional theory.

• In principle an optimization problem of finding structures with
minimal energy.

Figure: Example of a molecular crystal module
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Motivation
Lennard-Jones potential

ULJ = 4ε

(
σ12

r 12
− σ6

r 6

)
• ε - Lennard-Jones potential well depth.

• σ - The finite distance at which the inter-particle potential is zero.

• r - The distance between two particles.

Figure: ULJ graph
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Motivation
Lennard-Jones potential stationary points

Potential for atoms:

ULJ =
∑
i<j

4εij

(
σ12
ij

r 12
ij

−
σ6
ij

r 6
ij

)
Potential for molecules:

ULJ =
∑
a∈A

∑
b∈B

4εab

(
σ12
ab

r 12
ab

− σ6
ab

r 6
ab

)

Figure: Stationary points of ULJ for atoms.
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Motivation
Energy vs. density

• Dense packed structures tend to have lower energies

Figure: T0 CSP Lattice energy landscape
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Motivation
Molecular packings

• Find dense packings of molecules approximated by polyhedra.
• Optimize packing density instead of energy.
• Use the resulting structures as starting positions in CSP.

(a) (b)

Figure: (a) Organic cage molecule 3 crystal structure. (b) α-shape of organic
cage molecule 3.
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PACKING
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Packing
18th Hilbert problem

”How can one arrange most densely in space an infinite number of equal
solids of given form, e.g. spheres with given radii or regular tetrahedra
with given edges (or in prescribed position), that is, how can one so fit
them together that the ratio of the filled to the unfilled space may be as
great as possible?”

D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., vol. 8, pages

437-479, 1902.
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Packing
Definition

Definition
The system of sets S1, S2, . . . is said to form a packing into the set S , if

Si ∩ Sj = ∅ (i 6= j)⋃
i

Si ⊂ S

i.e if no two of the sets S1, S2, . . . have any element in common and
each element of the sets S1, S2, . . . belongs to S .
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Packing
Our setting

• S = E3

• S1, S2, . . . is a finite collection or countably infinite of translates of
rotations of a single compact set K .

• Translate of K is a set of all points k + a, where k ∈ K , and a is a
fixed point or vector.

• Rotation is a set of all points Rk for k ∈ K and
R ∈ SO(3) = {A ∈ R3×3 : ATA = I , det A = 1}.

Figure: A packing with tetrahedra
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Packing
Packing density

Definition
The density ρ(K) of the packing K is

ρ(K) = lim sup
c→∞

ρ(K,C )

where

ρ(K,C ) =
1

vol(C )

∑
(RjK+ai )∩C 6=∅

vol(RjK + ai ).

• {ai} be a sequence of points.

• {Rj : Rj ∈ SO(3)} a collection of rotations.

• K a set with finite volume vol(K ).

• C a cube with the edge length c .

• K = {RjK + ai} a system of sets that forms a packing.

• If ρ(K) is a packing then 0 ≤ ρ(K) ≤ 1.
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Packing
Lattice

Definition
Let a1, a2, . . . , an be n linearly independent vectors in En. The set
Λ = {u1a1 + u2a2 + · · ·+ unan | ui ∈ Z} is called a lattice.

Figure: A plane lattice
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Packing
Lattice packing

Definition
A lattice packing KL is a system of translates of a given set K i.e.

KL = {K + a | a ∈ Λ}

if it is a packing into the whole space.

Figure: The densest lattice packing with the tetrahedron.
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Packing
Periodic packing

Definition
A periodic packing KP is a system of translates and rotations of a given
set K , that is

KP = {RiK + ai + bj | i = 1, 2, . . . ,N; j = 1, 2, . . . }

if it is a packing into the whole space.

• a1, a2, . . . , aN is a set of points

• b1,b2, . . . ∈ Λ

• R1,R2, . . . ,RN ∈ SO(3).

17 / 52



Packing
Invariance of the packing density

Theorem
Let K be a bounded set with positive measure, let C be a cube (with its
edges parallel to the coordinate axes) with edge-length s(C ), and let T
be a non-singular affine transformation. Let a1, a2, . . . , aN be a set of
points, and let b1,b2, . . . be the points of the lattice of all points that
have integral multiples of s(C ) for co-ordinates. Let KP be the periodic
system of sets

K + ai + bj (i = 1, 2, . . . ,N; j = 1, 2, . . . )

and let TKP denote the system of sets

T (K + ai + bj) (i = 1, 2, . . . ,N; j = 1, 2, . . . ) .

Then

ρ (TKP) = ρ (KP) =
Nvol(K )

vol(C )
.
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Packing
Packing formulas

Lattice packing:

ρ(KL) =
vol(K )

| det(Λ)|
Periodic packing:

ρ(KP) =
Nvol(K )

| det(Λ)|
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Packing
Problem statement

Find a periodic packing Kmax of N congruent copies of a given set K
such that

Kmax = argmax
KP

ρ(KP).
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Packing
Bodies K for which the densest packing is known
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Packing
Bodies K ∈ E3 for which the densest lattice packing is known
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PRELIMINARY RESULTS
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Preliminary results
Monte-Carlo molecular dynamics simulations

• First idea: use stochastic optimization.

• Well explored approach.

• For example by Salvatore Torquato and Yang Jiao
S. Torquato and Y. Jiao, Dense packings of polyhedra: Platonic and
Archimedean solids, Phys. Rev. E, vol. 80, 2009.
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Preliminary results
Torquato and Jiao packing algorithm

Algorithm:

• For N number of stages do
• For M number of cycles do

• For every polyhedron in a unit cell
• With probability p translate the polyhedron in a random direction

within the unit cell or with 1 − p rotate the polyhedron around a

random axis by a random angle.

• Repeat until successful rotation/translation or until J number of

attempts.

• With probability pu contract the unit cell or with the probability
1− pu expand the unit cell by a random strain tensor. Repeat until
success or until L number of attempts.

Restrictions:

• Only the centres of the packed objects have to be contained inside
the unit cell.

• No overlaps between the objects in the unit cell and neighbouring
unit cells.
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Preliminary results
Separating axis theorem

Theorem
Two convex polyhedra do not intersect if and only if there exists a
separating plane which is either parallel to a face of one polyhedron or
which is parallel to at least one edge of each polyhedron.

• A consequence of Minkowsky’s Separating hyperplane theorem

• A and B do not overlap ⇔ orthogonal projections of A and B onto
the normal of the separating hyperplane (separating axis) do not
overlap.

• For two general polyhedrons with the same number of faces (F ) and
edges (E ) there are 2F + E 2 potential separating axes.

• Limits the overlap check only to convex sets.
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Preliminary results
Simulated annealing

We implemented the Torquato-Jiao packing algorithm in Julia
programming language with a modification in the unit cell adaptation
acceptance rate:

P(Kt ← Knew ) =

{
1 if ∆ρ > 0

e
−∆ρ
Tt if ∆ρ ≤ 0

where ∆ρ = ρ(Knew )− ρ(Kt).

27 / 52



Preliminary results
Tetrahedra packing

Left:Initial density 0.06415, Right: Output density 0.67045.

Figure: Single unit cell

Figure: 27 unit cells

Currently the best achieved density is 0.856347
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Preliminary results
Octahedra packing

Left:Initial density 0.1667, Right: Output density 0.9178.

Figure: Single unit cell

Figure: 27 unit cells

Optimal lattice packing density 0.9474.
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Preliminary results
Pentacene modelling

• From a CSP dataset containing 586 pentacene structures we
computed minimum euclidean distance between pentacene molecules
within every crystal structure. min dist = 0.5573

• Around every pentacene atom we put 14 points uniformly placed on
a sphere with the radius 0.5573/2.

• Computed the convex hull of the resulting point cloud.

• Resulting polyhedron defined by a triangulation with 58 vertices, 112
edges, 168 faces.

Figure: Pentacene
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Preliminary results
Pentacene modelling

(a)

(b) (c)

Figure: (a) Centers of atoms of pentacene. (b) 14 points placed on a sphere with

radius 0.5573/2. (c) Convex hull of the resulting point cloud with centres of

pentacene atoms inside (red).
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Preliminary results
Pentacene modelling

(a)

(b)

Figure: (a) A model of the pentacene crystal structure from the CSP dataset. (b)

The crystal structure where the minimum distance between two pentacene molecules

is attained.
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Preliminary results
Pentacene packing

(a) (b) (c)

Figure: Densities of packings of (a) 1 ρ ≈ 1, (b) 2 ρ ≈ 1, (c) 4 ρ = 0.8093
pentacene models.
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Preliminary results
Pentacene packing

(a) (b)

Figure: Densities of packings of (a) 8 ρ = 0.6940 and (b) 54 ρ = 0.1521
pentacene models.
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Preliminary results
Mathematical programming formulation for the 2-simplex periodic

packing problem

The model:

• Λ =
{

p1u1 + p2u2 | p1, p2 ∈ [0, 1]; u1, u2 ∈ R2
}

a unit cell defined by

the set of generators Λ =

(
u11 u12

u21 u22

)
• T0 =

{
φ1

(
1
0

)
+ φ2

(
0
1

)
−
( 1

3
1
3

)
| 0 ≤ φ1 + φ2 ≤ 1

}
a 2-simplex centred

at the origin.
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Preliminary results
Mathematical programming formulation for the 2-simplex periodic

packing problem

The model (continued):

• N copies of T0 translated by ck ∈ R2 and rotated by Rk ∈ SO(2):

Tk =
{

Λck + Rkp0 | p0 ∈ T0

}
where ck =

(
xk

yk

)
∈ [0, 1]× [0, 1] and Rk =

(
cos θk − sin θk
sin θk cos θk

)
for

k = 1, 2, . . . ,N and θk ∈ [0, 2π].

• Translates T i,j
k of Tk in the neighbouring unit cells

T i,j
k =

{
Λ

(
i

j

)
+ pk | pk ∈ Tk

}
for i , j ∈ {−2,−1, 0, 1, 2}.
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Preliminary results
Mathematical programming formulation for the 2-simplex periodic

packing problem

Problem statement:

min obj = min vol(Λ) = min det(Λ) = min u11u22 − u12u21

as a function of 4 + 3N variables i.e
obj(u11, u12, u21, u22, c1, . . . , cN , θ1, . . . , θN), subject to

ci ∈ [0, 1]× [0, 1]; i = 1, 2, . . . ,N

Int(Tk) ∩ Int(T i,j
l ) = ∅

where Int(·) is the interior of a set, k , l = 1, 2, . . . ,N,
i , j = −2,−1, 0, 1, 2, excluding the case when l = k , i = 0, j = 0.
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Preliminary results
Alternative constrains formulation

Observation:

• For intersection check of two simplexes it’s enough to check if the
vertices of one simplex do not lie inside the other simplex.

• All simplexes are rotations and translations of T0
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Preliminary results
Alternative constrains formulation

• Define separating hyperplanes by

αhx + βhy + γh = 0

for h = 1, 2, 3 where αh, βh, γh are given by the edges of T0.
• Vertices of T0: (

x0

y0

)
∈ Vert(T0)

.
• Vertices of Tk : (

x0,0
k

y 0,0
k

)
= Λck + Rk

(
x0

y0

)
∈ Vert(Tk)

• Vertices of T i,j
l :(

x i,j
l

y i,j
l

)
= Λ

(
cl +

(
i

j

))
+ Rl

(
x0

y0

)
∈ Vert(T i,j

l )
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Preliminary results
Alternative constrains formulation

• Vertices of Tk in the coordinate system of T i,j
l :(

x̃0,0
k

ỹ 0,0
k

)
= R−1

l

[(
x0,0
k

y 0,0
k

)
− Λ

(
cl +

(
i

j

))]

• Vertices of T i,j
l in the coordinate system of Tk :(

x̃ i,j
l

ỹ i,j
l

)
= R−1

k

[(
x i,j
l

y i,j
l

)
− Λck

]
.
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Preliminary results
Alternative constrains formulation

Int(Tk) ∩ Int(T i,j
l ) = ∅

⇔ min
i,j,k,l

max{ max
1≤h≤3

min
(x0
y0

)∈Vert(T0)
v 0,0
h,k , max

1≤h≤3
min

(x0
y0

)∈Vert(T0)
v i,j
h,l} ≥ 0

where

v 0,0
h,k = αhx̃0,0

k + βhỹ 0,0
k + γh

v i,j
h,l = αhx̃ i,j

l + βhỹ i,j
l + γh

,αh, βh, γh are the coefficients of the separating hyperplanes of T0 defined
in previously and k , l = 1, 2, . . . ,N, i , j = −2,−1, 0, 1, 2, excluding the
case when l = k , i = 0, j = 0.
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Preliminary results
Experiments: Genetic algorithm

• Tested using Matlab’s Global optimization toolbox genetic algorithm.

(a) (b) (c)

Figure: Output configurations of genetic algorithm for the packing of (a) 2
ρ = 1, (b) 4 ρ = 0.6715, (c) 6 simplexes ρ = 0.7534 in a unit cell.
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Preliminary results
Experiments: Nonlinear constrained optimization

• Used Matlab’s optimization toolbox nonlinear constrained solver

• Implements interior-point method
• Objective function: a homogeneous polynomial of degree 2 X

5obj = (u22,−u21,−u12, u11, 0, . . . , 0)

• Overlap constrains: continuous but only piecewise differentiable
function ×
• BFGS Hessian approximation
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Preliminary results
Experiments: Nonlinear constrained optimization

• Packing 2, 3, 4, 5 simplexes in a unit cell.

• 100 runs with random initial configurations (rotations) for each
setting.

• Results:
Setting with 2 simplexes generated optimal solutions but with
degenerate unit cells i.e det(Λ̄) ≈ 0.

Setting Feasible solutions found ρ̄ Var(ρ) max ρ
3 39 0.5827 0.0197 0.8118
4 20 0.5850 0.0127 0.7959
5 9 0.5637 0.0111 0.7246
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Preliminary results
Experiments: Nonlinear constrained optimization

(a) (b) (c)

Figure: Best solutions found using nonlinear constrained optimization for (a) 3,
(b) 4, (c) 5 simplexes in a unit cell. For each case initial (upper image) and
output (lower image) configurations are displayed.
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FUTURE WORK

46 / 52



Future work
Limitations of presented methods

1. Geometric model

• Pentacene has 4 main packing types.

• Monte-Carlo packing algorithm → β

Figure: (a) herringbone; (b) sandwich herringbone; (c) γ and (d) sheet (β).

47 / 52



Future work
Limitations of presented methods

2. Optimization methods

• Decreasing packing density with increasing number of objects in the
unit cell.

• Solutions depend on initial configurations.

• Complicated configuration space → Complicated objective function
landscape (many hills and valleys) → Hill climbing is necessary.
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Future work
Limitations of presented methods

3. Concavity

• Convex hulls of the organic cage molecule crystal structure overlap.

• Spectrum of α-shapes → There exists α for which the shapes do not
overlap but α + ε there is an overlap for some small ε.

• Overlap checks for concave sets are necessary.

(a) (b)

Figure: (a) convex hull and (b) α-shape of an organic cage molecule crystal
structure.
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Future work
Solutions

1. Geometric model

• Make use of space-groups

• Adjust only one object in the unit cell and the unit cell itself. The
rest is given by space-group symmetries (230).

Figure: A P21/c crystal structure and its symmetry elements with. Glide planes
are emphasized by the shading.
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Future work
Solutions

2. Optimisation methods
• Explore black box optimisation methods and replace the Simulated

annealing schedule
• Evolution strategies

• Covariance matrix adaptation evolution strategy
• Natural evolution strategy

3. Concavity
• Implement overlap checks for concave polyhedra.

• Convex decomposition
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