

The Leverhulme Research Centre for Functional Materials Design

Periodic packings in the light of crystal structure prediction.

First Year Progress Report

Miloslav Torda

Supervisors: Prof Yannis Goulermas Dr Vitaliy Kurlin Prof Graeme M. Day Dr Linjiang Chen Advisors: Prof Leszek A. Gasieniec Prof Rahul Savani

Imperial College London

Table of Contents

2 Packing

3 Preliminary results

4 Future work

5 Appendix

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ 2/42

MOTIVATION

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ 3/42

Motivation

(日) (部) (注) (注) (三)

Crystal structure prediction

- **Crystal** A structure built of one or a few different kinds of discrete units, arranged in more or less modular fashion.
- **Crystal structure prediction (CSP)** The calculation of crystal structures of solids from first principles (QED).
- In principle an optimization problem of finding structures with minimal lattice energy.
- Calculations are based on
 - Force field methods.
 - Density functional theory.

Figure: Example of a molecular crystal module

Motivation

Energy vs. density

• Dense packed structures tend to have lower energies

Figure: T0 CSP Lattice energy landscape

Molecular packings

- Find dense packings of molecules approximated by polyhedra.
- Optimize packing density instead of energy.
- Use the resulting structures as starting positions in CSP.

Figure: (a) Organic cage molecule 3 crystal structure. (b) α -shape of organic cage molecule 3.

PACKING

Packing Definition

Definition

The system of sets S_1 , S_2 ,... is said to form a packing into the set S, if

$$egin{aligned} S_i \cap S_j &= \emptyset \ (i
eq j) \ &igcup_i S_i \subset S \end{aligned}$$

i.e if no two of the sets S_1 , S_2 ,... have any element in common and each element of the sets S_1 , S_2 ,... belongs to S.

Packing

Lattice and unit cell

Definition

Let $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ be n linearly independent vectors in \mathbf{E}^n . The set $\Lambda = \{u_1\mathbf{a}_1 + u_2\mathbf{a}_2 + \cdots + u_n\mathbf{a}_n \mid u_i \in \mathbb{Z}\}$ is called a **lattice** and $\overline{\Lambda} = \{v_1\mathbf{a}_1 + v_2\mathbf{a}_2 + \cdots + v_n\mathbf{a}_n \mid v_i \in [0, 1]\}$ is called a **unit cell**.

Figure: (a) A plane lattice and (b) a corresponding unit cell.

<ロト < 回 ト < 巨 ト < 巨 ト ミ シ へ () 9/42

Packing Periodic packing

Definition

A periodic packing \mathcal{K}_P is a system of translates and rotations of a given set \mathcal{K} , that is

$$\mathcal{K}_{P} = \{ R_{i}K + \mathbf{a_{i}} + \mathbf{b_{j}} \mid i = 1, 2, \dots, N; \ j = 1, 2, \dots \}$$

if it is a packing into the whole space.

- $a_1, a_2, \ldots, a_N \in \overline{\Lambda}$
- $\bullet \ b_1, b_2, \ \ldots \in \Lambda$
- $R_1, R_2, \ldots, R_N \in SO(n) = \{A \in \mathbb{R}^{n \times n} : A^T A = I, \text{ det } A = 1\}.$

Figure: (a) A packing of 8 tetrahedra in a unit cell forming a module. (b) Periodic packing based on this module.

イロト イヨト イヨト イヨト 二日

Packing

11/42

Periodic packing density and Periodic packing problem

Definition

The periodic packing density $\rho(\mathcal{K}_P)$ of the periodic packing \mathcal{K}_P is

$$\rho(\mathcal{K}_P) = \frac{N \mathrm{vol}(\mathcal{K})}{|\det(\Lambda)|}.$$

Periodic packing problem statement:

$$\mathcal{K}_{\max} = \operatorname*{argmax}_{\mathcal{K}_{\mathcal{P}}} \rho(\mathcal{K}_{\mathcal{P}}).$$

PRELIMINARY RESULTS

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q (* 12/42

Pentacene modelling

- Around every pentacene atom we put 14 points uniformly placed on a sphere with the radius 0.5573/2.
- Computed the convex hull of the resulting point cloud.
- Resulting polyhedron defined by a triangulation with 58 vertices, 112 edges, 168 faces.

Figure: (a) Pentacene. (b) Centers of atoms of pentacene. (c) 14 points placed on a sphere with radius 0.5573/2. (d) Convex hull of the resulting point cloud with centres of pentacene atoms inside (red).

Pentacene modelling

 The radius was computed from a CSP dataset containing 586 pentacene structures, where minimum euclidean distance between pentacene molecules within every crystal structure was computed.

Figure: (a) A model of the pentacene crystal structure from the CSP dataset. (b) The crystal structure where the minimum distance between two pentacene molecules is attained. $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle = \Xi$

Monte-Carlo molecular dynamics simulations

 Implemented the Torquato-Jiao packing algorithm¹ in Julia programming language with a modification in the unit cell adaptation acceptance rate:

$$P(\mathcal{K}_t \leftarrow \mathcal{K}_{new}) = egin{cases} 1 & ext{if } \Delta
ho > 0 \ e^{rac{-\Delta
ho}{T_t}} & ext{if } \Delta
ho \leq 0 \end{cases}$$

where $\Delta \rho = \rho(\mathcal{K}_{new}) - \rho(\mathcal{K}_t)$.

• Used the algorithm to find dense periodic packings of the pentacene model

[1] S. Torquato and Y. Jiao, Dense packings of polyhedra: Platonic and Archimedean solids, Phys. Rev. E, vol. 80, 2009.

Pentacene packings

Figure: Densities of packings of (a) 1 $\rho\approx$ 1, (b) 2 $\rho\approx$ 1, (c) 4 $\rho=$ 0.8093 pentacene models.

Pentacene packings

Figure: Densities of packings of (a) 8 $\rho=$ 0.6940 and (b) 54 $\rho=$ 0.1521 pentacene models.

Mathematical programming formulation for the 2-simplex periodic packing problem

Problem statement:

$$\mathsf{min}\,\mathsf{obj}=\mathsf{min}\,\mathsf{vol}(\overline{\Lambda})=\mathsf{min}\,\mathsf{det}(\Lambda)$$

as a function of 4 + 3N variables i.e obj $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{c}_1, \dots, \mathbf{c}_N, \theta_1, \dots, \theta_N)$, subject to

$$\mathbf{c}_k, \mathbf{c}_l \in \Lambda$$

 $ext{Int}(\mathcal{T}_k) \cap ext{Int}(\mathcal{T}_l^{i,j}) = \emptyset$

for k, l = 1, 2, ..., N, i, j = -2, -1, 0, 1, 2, excluding the case when l = k, i = 0, j = 0.

- Int(·) is the interior of a set.
- \mathbf{c}_k is the centre of 2-simplex T_k .
- $T_{I}^{i,j}$ is a copy of 2-simplex T_{I} in the unit cell (i,j).

Experiments: Nonlinear constrained optimization

- Used Matlab's optimization toolbox nonlinear constrained solver to find dense packings of 2, 3, 4, 5 simplexes in a unit cell.
- 100 runs with random initial configurations (rotations) for each setting.
- Results:

Setting with 2 simplexes generated optimal solutions but with degenerate unit cells i.e det(Λ) \approx 0.

Setting	Feasible solutions found	$\bar{ ho}$	Var(ho)	$\max ho$
3	39	0.5827	0.0197	0.8118
4	20	0.5850	0.0127	0.7959
5	9	0.5637	0.0111	0.7246

Experiments: Nonlinear constrained optimization

Figure: Best solutions found using nonlinear constrained optimization for (a) 3, (b) 4, (c) 5 simplexes in a unit cell. For each case initial (upper image) and output (lower image) configurations are displayed.

FUTURE WORK

Limitations of presented methods

1. Modelling

- Pentacene has 4 main packing types.
- Monte-Carlo packing algorithm $\rightarrow \beta$

Figure: (a) herringbone; (b) sandwich herringbone; (c) γ and (d) sheet (β).

Limitations of presented methods

2. Optimization methods

- Decreasing packing density with increasing number of objects in the unit cell.
- Solutions depend on initial configurations.
- Complicated configuration space \rightarrow Complicated objective function landscape (many hills and valleys) \rightarrow Hill climbing is necessary.

Limitations of presented methods

3. Concavity

- Convex hulls of the organic cage molecule crystal structure overlap.
- Spectrum of α-shapes → There exists α for which the shapes do not overlap but α + ε there is an overlap for some small ε.
- Overlap checks for concave sets are necessary.

Figure: (a) convex hull and (b) $\alpha\mbox{-shape of an organic cage molecule crystal structure.}$

1. Modelling

- Make use of space-groups
- Adjust only one object in the unit cell and the unit cell itself. The rest is given by space-group symmetries (230).

Figure: A $P2_1/c$ crystal structure and its symmetry elements with. Glide planes are emphasized by the shading.

Future work Solutions

2. Optimisation methods

- Explore black box optimisation methods and replace the Simulated annealing schedule
 - Evolution strategies
 - Covariance matrix adaptation evolution strategy
 - Natural evolution strategy

3. Concavity

- Implement overlap checks for concave polyhedra.
 - Convex decomposition

THANK YOU

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 27/42

APPENDIX

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 28 / 42

Packing density

Definition The density $\rho(\mathcal{K})$ of the packing \mathcal{K} is

$$\rho(\mathcal{K}) = \limsup_{c \to \infty} \rho(\mathcal{K}, C)$$

where

$$ho(\mathcal{K},C) = rac{1}{ ext{vol}(C)} \sum_{(R_j \mathcal{K} + a_i) \cap C \neq \emptyset} ext{vol}(R_j \mathcal{K} + a_i).$$

- $\{a_i\}$ be a sequence of points.
- $\{R_j : R_j \in SO(3)\}$ a collection of rotations.
- *K* a set with finite volume vol(*K*).
- C a cube with the edge length c.
- $\mathcal{K} = \{R_j \mathcal{K} + a_i\}$ a system of sets that forms a packing.
- If $\rho(\mathcal{K})$ is a packing then $0 \le \rho(\mathcal{K}) \le 1$.

Invariance of the packing density

Theorem

Let K be a bounded set with positive measure, let C be a cube (with its edges parallel to the coordinate axes) with edge-length s(C), and let T be a non-singular affine transformation. Let a_1, a_2, \ldots, a_N be a set of points, and let b_1, b_2, \ldots be the points of the lattice of all points that have integral multiples of s(C) for co-ordinates. Let \mathcal{K}_P be the periodic system of sets

$$K + \mathbf{a_i} + \mathbf{b_j}$$
 (*i* = 1, 2, ..., *N*; *j* = 1, 2, ...)

and let $T\mathcal{K}_P$ denote the system of sets

$$T(K + \mathbf{a_i} + \mathbf{b_j})$$
 $(i = 1, 2, ..., N; j = 1, 2, ...).$

Then

$$\rho(\mathcal{TK}_{\mathcal{P}}) = \rho(\mathcal{K}_{\mathcal{P}}) = \frac{N \operatorname{vol}(\mathcal{K})}{\operatorname{vol}(\mathcal{C})}.$$

31/42

(日) (部) (注) (注) (三)

Bodies K for which the densest packing is known

BODY	SOURCE
Circular disk in \mathbb{E}^2	[Thu10]
Parallel body of a rectangle	[Fej67]
Intersection of two congruent circular disks	[Fej71]
Centrally symmetric <i>n</i> -gon (algorithm in $O(n)$ time)	[MS90]
Ball in \mathbb{E}^3	[Hal05]
Ball in \mathbb{E}^8	[Via17]
Ball in \mathbb{E}^{24}	[CKM17]
Truncated rhombic dodecahedron in \mathbb{E}^3	[Bez94]

Bodies $\mathsf{K} \in \ \textbf{E}^3$ for which the densest lattice packing is known

BODY	$\delta_L(K)$	SOURCE
$\{x \mid x \le 1, x_3 \le \lambda\} (\lambda \le 1)$	$\pi(3-\lambda^2)^{1/2}/6$	[Cha50]
$\{x \mid x_i \le 1, x_1 + x_2 + x_3 \le \lambda\}$	$\left\{ \begin{array}{ll} \displaystyle \frac{9-\lambda^2}{9} & \text{for } 0 < \lambda \leq \frac{1}{2} \\ \\ \displaystyle \frac{9\lambda(9-\lambda^2)}{4(-\lambda^3-3\lambda^2+24\lambda-1)} & \text{for } \frac{1}{2} \leq \lambda \leq 1 \\ \\ \displaystyle \frac{9(\lambda^3-9\lambda^2+27\lambda-3)}{8\lambda(\lambda^2-9\lambda+27)} & \text{for } 1 \leq \lambda \leq 3 \end{array} \right.$	[Whi51]
$\{x \mid \sqrt{(x_1)^2 + (x_2)^2} + x_3 \le 1\}$	$\pi\sqrt{6}/9 = 0.8550332\dots$	[Whi48]
Tetrahedron	18/49 = 0.3673469	[Hoy70]
Octahedron	$18/19 = 0.9473684\dots$	[Min04]
Dodecahedron	$(5 + \sqrt{5})/8 = 0.9045084\dots$	[BH00]
Icosahedron	0.8363574	[BH00]
Cuboctahedron	45/49 = 0.9183633	[BH00]
Icosidodecahedron	$(45 + 17\sqrt{5})/96 = 0.8647203$	[BH00]
Rhombic Cuboctahedron	$(16\sqrt{2} - 20)/3 = 0.8758056$	[BH00]
Rhombic Icosidodecahedron	$(768\sqrt{5} - 1290)/531 = 0.8047084\dots$	[BH00]
Truncated Cube	$9(5-3\sqrt{2})/7 = 0.9737476\dots$	[BH00]
Truncated Dodecahedron	$(25 + 37\sqrt{5})/120 = 0.8977876$	[BH00]
Truncated Icosahedron	0.78498777	[BH00]
Truncated Cuboctahedron	0.8493732	[BH00]
Truncated Icosidodecahedron	$(19 + 10\sqrt{5})/50 = 0.8272135\dots$	[BH00]
Truncated Tetrahedron	$207/304 = 0.6809210\dots$	[BH00]
Snub Cube	0.787699	[BH00]
Snub Dodecahedron	0.7886401	[BH00]

Torquato and Jiao packing algorithm

Algorithm:

- For N number of stages do
 - For M number of cycles do
 - For every polyhedron in a unit cell
 - With probability p translate the polyhedron in a random direction within the unit cell or with 1 p rotate the polyhedron around a random axis by a random angle.
 - \bullet Repeat until successful rotation/translation or until J number of attempts.
 - With probability p_u contract the unit cell or with the probability $1 p_u$ expand the unit cell by a random strain tensor. Repeat until success or until L number of attempts.

Restrictions:

- Only the centres of the packed objects have to be contained inside the unit cell.
- No overlaps between the objects in the unit cell and neighbouring unit cells.

Separating axis theorem

Theorem

Two convex polyhedra do not intersect if and only if there exists a separating plane which is either parallel to a face of one polyhedron or which is parallel to at least one edge of each polyhedron.

- A consequence of Minkowsky's Separating hyperplane theorem
- A and B do not overlap ⇔ orthogonal projections of A and B onto the normal of the separating hyperplane (separating axis) do not overlap.
- For two general polyhedrons with the same number of faces (*F*) and edges (*E*) there are $2F + E^2$ potential separating axes.
- Limits the overlap check only to convex sets.

Mathematical programming formulation for the 2-simplex periodic packing problem

The model:

- $\Lambda = \left\{ p_1 u_1 + p_2 u_2 \mid p_1, p_2 \in [0, 1]; u_1, u_2 \in \mathbb{R}^2 \right\}$ a unit cell defined by the set of generators $\overline{\Lambda} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix}$
- $T_0 = \left\{ \phi_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \phi_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} \mid 0 \le \phi_1 + \phi_2 \le 1 \right\}$ a 2-simplex centred at the origin.

Mathematical programming formulation for the 2-simplex periodic packing problem

The model (continued):

• *N* copies of T_0 translated by $c_k \in \mathbb{R}^2$ and rotated by $R_k \in SO(2)$:

$$T_k = \left\{ \overline{\Lambda} c_k + R_k p_0 \mid p_0 \in T_0 \right\}$$

where
$$c_k = \begin{pmatrix} x^k \\ y^k \end{pmatrix} \in [0, 1] \times [0, 1]$$
 and $R_k = \begin{pmatrix} \cos \theta_k & -\sin \theta_k \\ \sin \theta_k & \cos \theta_k \end{pmatrix}$ for $k = 1, 2, \dots, N$ and $\theta_k \in [0, 2\pi]$.

• Translates $T_k^{i,j}$ of T_k in the neighbouring unit cells

$$T_k^{i,j} = \left\{ \overline{\Lambda} \begin{pmatrix} i \\ j \end{pmatrix} + p_k \mid p_k \in T_k \right\}$$

for $i, j \in \{-2, -1, 0, 1, 2\}.$

Alternative constrains formulation

Define separating hyperplanes by

$$\alpha_h \mathbf{x} + \beta_h \mathbf{y} + \gamma_h = \mathbf{0}$$

for h = 1, 2, 3 where $\alpha_h, \beta_h, \gamma_h$ are given by the edges of T_0 . • Vertices of T_0 :

$$egin{pmatrix} x_0 \ y_0 \end{pmatrix} \in \texttt{Vert}(\mathcal{T}_0)$$

• Vertices of T_k :

$$egin{pmatrix} x_k^{0,0} \ y_k^{0,0} \end{pmatrix} = \overline{\Lambda} c_k + R_k egin{pmatrix} x_0 \ y_0 \end{pmatrix} \in ext{Vert}(T_k) \end{cases}$$

• Vertices of $T_I^{i,j}$:

$$\begin{pmatrix} x_l^{i,j} \\ y_l^{i,j} \end{pmatrix} = \overline{\Lambda} \left(c_l + \begin{pmatrix} i \\ j \end{pmatrix} \right) + R_l \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \operatorname{Vert}(T_l^{i,j})$$

Alternative constrains formulation

40 / 42

• Vertices of T_k in the coordinate system of $T_l^{i,j}$:

$$\begin{pmatrix} \tilde{x}_{k}^{0,0} \\ \tilde{y}_{k}^{0,0} \end{pmatrix} = R_{l}^{-1} \left[\begin{pmatrix} x_{k}^{0,0} \\ y_{k}^{0,0} \end{pmatrix} - \overline{\Lambda} \left(c_{l} + \begin{pmatrix} i \\ j \end{pmatrix} \right) \right]$$

• Vertices of $T_l^{i,j}$ in the coordinate system of T_k :

$$\begin{pmatrix} \tilde{x}_l^{i,j} \\ \tilde{y}_l^{i,j} \end{pmatrix} = R_k^{-1} \begin{bmatrix} \begin{pmatrix} x_l^{i,j} \\ y_l^{i,j} \end{pmatrix} - \overline{\Lambda} c_k \end{bmatrix}.$$

Alternative constrains formulation

$$\operatorname{Int}(\mathcal{T}_k) \cap \operatorname{Int}(\mathcal{T}_l^{i,j}) = \emptyset$$

$$\Leftrightarrow \min_{i,j,k,l} \max\{\max_{1 \le h \le 3} \min_{\binom{v_0}{y_0} \in \operatorname{Vert}(\mathcal{T}_0)} v_{h,k}^{0,0}, \max_{1 \le h \le 3} \min_{\binom{v_0}{y_0} \in \operatorname{Vert}(\mathcal{T}_0)} v_{h,l}^{i,j}\} \ge 0$$

where

$$\begin{aligned} \mathbf{v}_{h,k}^{0,0} &= \alpha_h \tilde{\mathbf{x}}_k^{0,0} + \beta_h \tilde{\mathbf{y}}_k^{0,0} + \gamma_h \\ \mathbf{v}_{h,l}^{i,j} &= \alpha_h \tilde{\mathbf{x}}_l^{i,j} + \beta_h \tilde{\mathbf{y}}_l^{i,j} + \gamma_h \end{aligned}$$

 $\alpha_h, \beta_h, \gamma_h$ are the coefficients of the separating hyperplanes of T_0 defined in previously and k, l = 1, 2, ..., N, i, j = -2, -1, 0, 1, 2, excluding the case when l = k, i = 0, j = 0.

Experiments: Genetic algorithm

• Tested using Matlab's Global optimization toolbox genetic algorithm.

Figure: Output configurations of genetic algorithm for the packing of (a) 2 $\rho = 1$, (b) 4 $\rho = 0.6715$, (c) 6 simplexes $\rho = 0.7534$ in a unit cell.