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Motivation
Crystal structure prediction

• Crystal - A structure built of one or a few different kinds of discrete
units, arranged in more or less modular fashion.

• Crystal structure prediction (CSP) - The calculation of crystal
structures of solids from first principles (QED).

• In principle an optimization problem of finding structures with
minimal lattice energy.

• Calculations are based on
• Force field methods.
• Density functional theory.

Figure: Example of a molecular crystal module
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Motivation
Energy vs. density

• Dense packed structures tend to have lower energies

Figure: T0 CSP Lattice energy landscape

5 / 42



Motivation
Molecular packings

• Find dense packings of molecules approximated by polyhedra.

• Optimize packing density instead of energy.

• Use the resulting structures as starting positions in CSP.

(a) (b)

Figure: (a) Organic cage molecule 3 crystal structure. (b) α-shape of organic
cage molecule 3.
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PACKING
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Packing
Definition

Definition
The system of sets S1, S2, . . . is said to form a packing into the set S , if

Si ∩ Sj = ∅ (i 6= j)⋃
i

Si ⊂ S

i.e if no two of the sets S1, S2, . . . have any element in common and
each element of the sets S1, S2, . . . belongs to S .
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Packing
Lattice and unit cell

Definition
Let a1, a2, . . . , an be n linearly independent vectors in En. The set
Λ = {u1a1 + u2a2 + · · ·+ unan | ui ∈ Z} is called a lattice and
Λ = {v1a1 + v2a2 + · · ·+ vnan | vi ∈ [0, 1]} is called a unit cell.

(a) (b)

Figure: (a) A plane lattice and (b) a corresponding unit cell.
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Packing
Periodic packing

Definition
A periodic packing KP is a system of translates and rotations of a given
set K , that is

KP = {RiK + ai + bj | i = 1, 2, . . . ,N; j = 1, 2, . . . }

if it is a packing into the whole space.

• a1, a2, . . . , aN ∈ Λ
• b1,b2, . . . ∈ Λ
• R1,R2, . . . ,RN ∈ SO(n) = {A ∈ Rn×n : ATA = I , det A = 1}.

(a) (b)

Figure: (a) A packing of 8 tetrahedra in
a unit cell forming a module. (b)
Periodic packing based on this module.
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Packing
Periodic packing density and Periodic packing problem

Definition
The periodic packing density ρ(KP) of the periodic packing KP is

ρ(KP) =
Nvol(K )

| det(Λ)|
.

Periodic packing problem statement:

Kmax = argmax
KP

ρ(KP).
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Preliminary results
Pentacene modelling

• Around every pentacene atom we put 14 points uniformly placed on
a sphere with the radius 0.5573/2.

• Computed the convex hull of the resulting point cloud.

• Resulting polyhedron defined by a triangulation with 58 vertices, 112
edges, 168 faces.

(a)

(b) (c) (d)

Figure: (a) Pentacene. (b)

Centers of atoms of pentacene.

(c) 14 points placed on a

sphere with radius 0.5573/2.

(d) Convex hull of the resulting

point cloud with centres of

pentacene atoms inside (red).
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Preliminary results
Pentacene modelling

• The radius was computed from a CSP dataset containing 586
pentacene structures, where minimum euclidean distance between
pentacene molecules within every crystal structure was computed.

(a)

(b)

Figure: (a) A model of the pentacene crystal structure from the CSP dataset. (b)

The crystal structure where the minimum distance between two pentacene molecules

is attained.
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Preliminary results
Monte-Carlo molecular dynamics simulations

• Implemented the Torquato-Jiao packing algorithm1 in Julia
programming language with a modification in the unit cell
adaptation acceptance rate:

P(Kt ← Knew ) =

{
1 if ∆ρ > 0

e
−∆ρ
Tt if ∆ρ ≤ 0

where ∆ρ = ρ(Knew )− ρ(Kt).

• Used the algorithm to find dense periodic packings of the pentacene
model

[1] S. Torquato and Y. Jiao, Dense packings of polyhedra: Platonic and Archimedean
solids, Phys. Rev. E, vol. 80, 2009.
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Preliminary results
Pentacene packings

(a) (b) (c)

Figure: Densities of packings of (a) 1 ρ ≈ 1, (b) 2 ρ ≈ 1, (c) 4 ρ = 0.8093
pentacene models.
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Preliminary results
Pentacene packings

(a) (b)

Figure: Densities of packings of (a) 8 ρ = 0.6940 and (b) 54 ρ = 0.1521
pentacene models.
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Preliminary results
Mathematical programming formulation for the 2-simplex periodic

packing problem

Problem statement:

min obj = min vol(Λ) = min det(Λ)

as a function of 4 + 3N variables i.e obj(u1,u2, c1, . . . , cN , θ1, . . . , θN),
subject to

ck , cl ∈ Λ

Int(Tk) ∩ Int(T i,j
l ) = ∅

for k, l = 1, 2, . . . ,N, i , j = −2,−1, 0, 1, 2, excluding the case when
l = k, i = 0, j = 0.

• Int(·) is the interior of a set.

• ck is the centre of 2-simplex Tk .

• T i,j
l is a copy of 2-simplex Tl in the unit cell (i , j).
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Preliminary results
Experiments: Nonlinear constrained optimization

• Used Matlab’s optimization toolbox nonlinear constrained solver to
find dense packings of 2, 3, 4, 5 simplexes in a unit cell.

• 100 runs with random initial configurations (rotations) for each
setting.

• Results:
Setting with 2 simplexes generated optimal solutions but with
degenerate unit cells i.e det(Λ) ≈ 0.

Setting Feasible solutions found ρ̄ Var(ρ) max ρ
3 39 0.5827 0.0197 0.8118
4 20 0.5850 0.0127 0.7959
5 9 0.5637 0.0111 0.7246
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Preliminary results
Experiments: Nonlinear constrained optimization

(a) (b) (c)

Figure: Best solutions found using nonlinear constrained optimization for (a) 3,
(b) 4, (c) 5 simplexes in a unit cell. For each case initial (upper image) and
output (lower image) configurations are displayed.
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Future work
Limitations of presented methods

1. Modelling

• Pentacene has 4 main packing types.

• Monte-Carlo packing algorithm → β

Figure: (a) herringbone; (b) sandwich herringbone; (c) γ and (d) sheet (β).
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Future work
Limitations of presented methods

2. Optimization methods

• Decreasing packing density with increasing number of objects in the
unit cell.

• Solutions depend on initial configurations.

• Complicated configuration space → Complicated objective function
landscape (many hills and valleys) → Hill climbing is necessary.
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Future work
Limitations of presented methods

3. Concavity

• Convex hulls of the organic cage molecule crystal structure overlap.

• Spectrum of α-shapes → There exists α for which the shapes do not
overlap but α + ε there is an overlap for some small ε.

• Overlap checks for concave sets are necessary.

(a) (b)

Figure: (a) convex hull and (b) α-shape of an organic cage molecule crystal
structure.
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Future work
Solutions

1. Modelling

• Make use of space-groups

• Adjust only one object in the unit cell and the unit cell itself. The
rest is given by space-group symmetries (230).

Figure: A P21/c crystal structure and its symmetry elements with. Glide planes
are emphasized by the shading.
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Future work
Solutions

2. Optimisation methods
• Explore black box optimisation methods and replace the Simulated

annealing schedule
• Evolution strategies

• Covariance matrix adaptation evolution strategy
• Natural evolution strategy

3. Concavity
• Implement overlap checks for concave polyhedra.

• Convex decomposition
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Packing extended
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Packing extended
Packing density

Definition
The density ρ(K) of the packing K is

ρ(K) = lim sup
c→∞

ρ(K,C )

where

ρ(K,C ) =
1

vol(C )

∑
(RjK+ai )∩C 6=∅

vol(RjK + ai ).

• {ai} be a sequence of points.

• {Rj : Rj ∈ SO(3)} a collection of rotations.

• K a set with finite volume vol(K ).

• C a cube with the edge length c .

• K = {RjK + ai} a system of sets that forms a packing.

• If ρ(K) is a packing then 0 ≤ ρ(K) ≤ 1.
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Packing extended
Invariance of the packing density

Theorem
Let K be a bounded set with positive measure, let C be a cube (with its
edges parallel to the coordinate axes) with edge-length s(C ), and let T
be a non-singular affine transformation. Let a1, a2, . . . , aN be a set of
points, and let b1,b2, . . . be the points of the lattice of all points that
have integral multiples of s(C ) for co-ordinates. Let KP be the periodic
system of sets

K + ai + bj (i = 1, 2, . . . ,N; j = 1, 2, . . . )

and let TKP denote the system of sets

T (K + ai + bj) (i = 1, 2, . . . ,N; j = 1, 2, . . . ) .

Then

ρ (TKP) = ρ (KP) =
Nvol(K )

vol(C )
.
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Packing extended
Bodies K for which the densest packing is known
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Packing extended
Bodies K ∈ E3 for which the densest lattice packing is known
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Preliminary results extended
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Preliminary results extended
Torquato and Jiao packing algorithm

Algorithm:

• For N number of stages do
• For M number of cycles do

• For every polyhedron in a unit cell
• With probability p translate the polyhedron in a random direction

within the unit cell or with 1 − p rotate the polyhedron around a

random axis by a random angle.

• Repeat until successful rotation/translation or until J number of

attempts.

• With probability pu contract the unit cell or with the probability
1 − pu expand the unit cell by a random strain tensor. Repeat until
success or until L number of attempts.

Restrictions:

• Only the centres of the packed objects have to be contained inside
the unit cell.

• No overlaps between the objects in the unit cell and neighbouring
unit cells.
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Preliminary results extended
Separating axis theorem

Theorem
Two convex polyhedra do not intersect if and only if there exists a
separating plane which is either parallel to a face of one polyhedron or
which is parallel to at least one edge of each polyhedron.

• A consequence of Minkowsky’s Separating hyperplane theorem

• A and B do not overlap ⇔ orthogonal projections of A and B onto
the normal of the separating hyperplane (separating axis) do not
overlap.

• For two general polyhedrons with the same number of faces (F ) and
edges (E ) there are 2F + E 2 potential separating axes.

• Limits the overlap check only to convex sets.
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Preliminary results extended
Mathematical programming formulation for the 2-simplex periodic

packing problem

The model:

• Λ =
{

p1u1 + p2u2 | p1, p2 ∈ [0, 1]; u1, u2 ∈ R2
}

a unit cell defined by

the set of generators Λ =

(
u11 u12

u21 u22

)
• T0 =

{
φ1

(
1
0

)
+ φ2

(
0
1

)
−
( 1

3
1
3

)
| 0 ≤ φ1 + φ2 ≤ 1

}
a 2-simplex centred

at the origin.
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Preliminary results extended
Mathematical programming formulation for the 2-simplex periodic

packing problem

The model (continued):

• N copies of T0 translated by ck ∈ R2 and rotated by Rk ∈ SO(2):

Tk =
{

Λck + Rkp0 | p0 ∈ T0

}
where ck =

(
xk

yk

)
∈ [0, 1]× [0, 1] and Rk =

(
cos θk − sin θk
sin θk cos θk

)
for

k = 1, 2, . . . ,N and θk ∈ [0, 2π].

• Translates T i,j
k of Tk in the neighbouring unit cells

T i,j
k =

{
Λ

(
i

j

)
+ pk | pk ∈ Tk

}
for i , j ∈ {−2,−1, 0, 1, 2}.
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Preliminary results extended
Alternative constrains formulation

• Define separating hyperplanes by

αhx + βhy + γh = 0

for h = 1, 2, 3 where αh, βh, γh are given by the edges of T0.
• Vertices of T0: (

x0

y0

)
∈ Vert(T0)

.
• Vertices of Tk : (

x0,0
k

y 0,0
k

)
= Λck + Rk

(
x0

y0

)
∈ Vert(Tk)

• Vertices of T i,j
l :(

x i,j
l

y i,j
l

)
= Λ

(
cl +

(
i

j

))
+ Rl

(
x0

y0

)
∈ Vert(T i,j

l )
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Preliminary results extended
Alternative constrains formulation

• Vertices of Tk in the coordinate system of T i,j
l :(

x̃0,0
k

ỹ 0,0
k

)
= R−1

l

[(
x0,0
k

y 0,0
k

)
− Λ

(
cl +

(
i

j

))]

• Vertices of T i,j
l in the coordinate system of Tk :(

x̃ i,j
l

ỹ i,j
l

)
= R−1

k

[(
x i,j
l

y i,j
l

)
− Λck

]
.
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Preliminary results extended
Alternative constrains formulation

Int(Tk) ∩ Int(T i,j
l ) = ∅

⇔ min
i,j,k,l

max{ max
1≤h≤3

min
(x0
y0

)∈Vert(T0)
v 0,0
h,k , max

1≤h≤3
min

(x0
y0

)∈Vert(T0)
v i,j
h,l} ≥ 0

where

v 0,0
h,k = αhx̃0,0

k + βhỹ 0,0
k + γh

v i,j
h,l = αhx̃ i,j

l + βhỹ i,j
l + γh

,αh, βh, γh are the coefficients of the separating hyperplanes of T0 defined
in previously and k , l = 1, 2, . . . ,N, i , j = −2,−1, 0, 1, 2, excluding the
case when l = k , i = 0, j = 0.
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Preliminary results extended
Experiments: Genetic algorithm

• Tested using Matlab’s Global optimization toolbox genetic algorithm.

(a) (b) (c)

Figure: Output configurations of genetic algorithm for the packing of (a) 2
ρ = 1, (b) 4 ρ = 0.6715, (c) 6 simplexes ρ = 0.7534 in a unit cell.
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