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MOTIVATION



Motivation
Crystal structure prediction
Crystal - A structure built of one or a few different kinds of discrete
units, arranged in more or less modular fashion.
Crystal structure prediction (CSP) - The calculation of crystal
structures of solids from first principles (QED).
In principle an optimization problem of finding structures with
minimal lattice energy.
Calculations are based on
® Force field methods.
® Density functional theory.

Figure: Example of a molecular crystal module
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Motivation
Energy vs. density

® Dense packed structures tend to have lower energies

density (g cm”)
03 04 05 06 07 08 08 10 11 12 13 14 15

To T0-0» %

Figure: TO CSP Lattice energy landscape
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Motivation
Molecular packings
® Find dense packings of molecules approximated by polyhedra.
® Optimize packing density instead of energy.
® Use the resulting structures as starting positions in CSP.

Figure: (a) Organic cage molecule 3 crystal structure. (b) a-shape of organic
cage molecule 3.
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PACKING



Packing

Definition
Definition
The system of sets 51, Sy, ... is said to form a packing into the set S, if

SinS=0(i#J)

Usics

i.e if no two of the sets Sy, Sp,... have any element in common and
each element of the sets S;, Sy, ... belongs to S.
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Packing

Lattice and unit cell

Definition

Let aj,az, ...,a, be n linearly independent vectors in E". The set
A ={wai + way+ -+ upan | u; € Z} is called a lattice and
A= {via; + vay + -+ vya, | v; € [0,1]} is called a unit cell.

Figure: (a) A plane lattice and (b) a corresponding unit cell.
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Packing
Periodic packing
Definition
A periodic packing ICp is a system of translates and rotations of a given
set K, that is

ICP:{R,-K+ai+bj|i:1,2,...,N;j:1,2,...}

if it is a packing into the whole space.

Oal,a27...,aN€K
® by,by, ... €A
® Ri,Ry,...,Ry€SO(n)={AcR™ : ATA= detA=1}.

Figure: (a) A packing of 8 tetrahedra in
a unit cell forming a module. (b)
Periodic packing based on this module.
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Packing

Periodic packing density and Periodic packing problem

Definition
The periodic packing density p(Kp) of the periodic packing Kp is
Nvol(K)
) = Tae

Periodic packing problem statement:

Kmax = argmax p(Kp).
Kp
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Preliminary results

Pentacene modelling

® Around every pentacene atom we put 14 points uniformly placed on
a sphere with the radius 0.5573/2.

® Computed the convex hull of the resulting point cloud.

® Resulting polyhedron defined by a triangulation with 58 vertices, 112
edges, 168 faces.

I [ A L Figure: (a) Pentacene. (b)

» g oo Centers of atoms of pentacene.
(a) (c) 14 points placed on a
sphere with radius 0.5573/2.
(d) Convex hull of the resulting
point cloud with centres of
pentacene atoms inside (red).
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Preliminary results

Pentacene modelling

® The radius was computed from a CSP dataset containing 586
pentacene structures, where minimum euclidean distance between
pentacene molecules within every crystal structure was computed.

Figure: (a) A model of the pentacene crystal structure from the CSP dataset. (b)
The crystal structure where the minimum distance between two pentacene molecules

is attained.
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Preliminary results

Monte-Carlo molecular dynamics simulations

® Implemented the Torquato-Jiao packing algorithm? in Julia
programming language with a modification in the unit cell
adaptation acceptance rate:

1 if Ap >0
P(Kt%KneW): —Ap I P
e ifAp<O

where Ap = p(Kpew) — p(Kt).

® Used the algorithm to find dense periodic packings of the pentacene
model

[1] S. Torquato and Y. Jiao, Dense packings of polyhedra: Platonic and Archimedean
solids, Phys. Rev. E, vol. 80, 2009.
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Preliminary results

Pentacene packings

(a) (b) (c)

Figure: Densities of packings of (a) 1 pa 1, (b) 2 p~ 1, (c) 4 p = 0.8093
pentacene models.

16 /42



Preliminary results

Pentacene packings

(b)

Figure: Densities of packings of (a) 8 p = 0.6940 and (b) 54 p = 0.1521
pentacene models.

17/42



Preliminary results
Mathematical programming formulation for the 2-simplex periodic
packing problem

Problem statement:

min obj = minvol(A) = mindet(A)

as a function of 4 4+ 3N variables i.e obj(uy,up,cy,...,cp,01,...,0n),
subject to

ci,cr €N
Int(Tk) N Int(T;Y) =0
for k,/=1,2,...,N, i,j=-2,—-1,0,1,2, excluding the case when
=k, i=0,j=0.
® Int(-) is the interior of a set.
® ¢, is the centre of 2-simplex Ty.

° T,i’j is a copy of 2-simplex T; in the unit cell (7, ).
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Used Matlab’s optimization toolbox nonlinear constrained solver to
find dense packings of 2, 3, 4, 5 simplexes in a unit cell.

Preliminary results

Experiments: Nonlinear constrained optimization

100 runs with random initial configurations (rotations) for each

setting.

Results:

Setting with 2 simplexes generated optimal solutions but with
degenerate unit cells i.e det(A) ~ 0.

Setting | Feasible solutions found p Var(p) | maxp
3 39 0.5827 | 0.0197 | 0.8118
4 20 0.5850 | 0.0127 | 0.7959
5 9 0.5637 | 0.0111 | 0.7246
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Preliminary results

Experiments: Nonlinear constrained optimization

(a) (b) (c)

Figure: Best solutions found using nonlinear constrained optimization for (a) 3,
(b) 4, (c) 5 simplexes in a unit cell. For each case initial (upper image) and
output (lower image) configurations are displayed.
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Future work
Limitations of presented methods

1. Modelling

® Pentacene has 4 main packing types.
® Monte-Carlo packing algorithm — j3

WAV AN/
A AA
SSANEANAN

Figure: (a) herringbone; (b) sandwich herringbone; (c) v and (d) sheet (8).
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Future work

Limitations of presented methods

2. Optimization methods

® Decreasing packing density with increasing number of objects in the
unit cell.

® Solutions depend on initial configurations.

® Complicated configuration space — Complicated objective function
landscape (many hills and valleys) — Hill climbing is necessary.
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Future work

Limitations of presented methods
3. Concavity
® Convex hulls of the organic cage molecule crystal structure overlap.
® Spectrum of a-shapes — There exists a for which the shapes do not
overlap but « + € there is an overlap for some small €.

® Qverlap checks for concave sets are necessary.

Figure: (a) convex hull and (b) a-shape of an organic cage molecule crystal

structure.
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Future work

Solutions

1. Modelling
® Make use of space-groups

® Adjust only one object in the unit cell and the unit cell itself. The
rest is given by space-group symmetries (230).

Figure: A P21/c crystal structure and its symmetry elements with. Glide planes
are emphasized by the shading.
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Future work

Solutions

2. Optimisation methods

® Explore black box optimisation methods and replace the Simulated
annealing schedule
® Evolution strategies

® Covariance matrix adaptation evolution strategy
® Natural evolution strategy

3. Concavity

® Implement overlap checks for concave polyhedra.
® Convex decomposition
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Packing extended

Packing density
Definition
The density p(K) of the packing K is

p(K) = limsup p(K, C)

C— 00
where
1
p(K,C) = o1(0) Z vol(RiK + a;).
(RiK+a;)NC#D
[ )

{a;} be a sequence of points.
{R;j : Rj € SO(3)} a collection of rotations.
® K a set with finite volume vol(K).

® C a cube with the edge length c.

K ={RjK + a;} a system of sets that forms a packing.
If p(K) is a packing then 0 < p(K) < 1.
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Packing extended

Invariance of the packing density

Theorem

Let K be a bounded set with positive measure, let C be a cube (with its
edges parallel to the coordinate axes) with edge-length s(C), and let T
be a non-singular affine transformation. Let a1, ay, ...,aN be a set of
points, and let by, b, ... be the points of the lattice of all points that

have integral multiples of s(C) for co-ordinates. Let Kp be the periodic
system of sets

K+ai+b (i=1,2,...,N; j=1,2,...)
and let TKCp denote the system of sets
T(K+ai+b) (i=12,....N; j=1,2,...).

Then Nool(K
p(ﬂcp)=p(icp)=v‘;j(‘c)).
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Packing extended

Bodies K for which the densest packing is known

BODY SOURCE
Circular disk in B [Thul0]
Parallel body of a rectangle [Fej67]
Intersection of two congruent circular disks [Fej71]
Centrally symmetric n-gon (algorithm in O(n) time) | [MS90]
Ball in E? [Hal05]
Ball in E® [Vial7]
Ball in E** [CKM17]
Truncated rhombic dodecahedron in E* [Bez94]
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Packing extended

Bodies K € E3 for which the densest lattice packing is known

BODY 61 (K) SOURCE
Gl <1l <A} (<1) "B 6 [Chaso)
2
u for0 <A < %
2
{z | |zi| <1, |z1 + @2 + 23] < A} % for % <Ai<1 [Whi51]
9(A3 —9AZ + 27\ — 3) for 1<A<3
8A(\2 — OX +27)
{z| /(@1)2 + (22)2 + |z3| < 1} mv/6/9 = 0.8550332.... [Whi4s8]
Tetrahedron 18/49 = 0.3673469 . .. [Hoy70]
Octahedron 18/19 = 0.9473684 . .. [Min04]
Dodecahedron (5 +V/5)/8 = 0.9045084 . .. [BHOO]
Icosahedron 0.8363574.. .. [BHOO]
Cuboctahedron 45/49 = 0.9183633.. .. [BHOO]
Icosidodecahedron (45 + 17v/5)/96 = 0.8647203 ... [BHOO]
Rhombic Cuboctahedron (16v/2 — 20)/3 = 0.8758056 . .. [BHOO]
Rhombic Icosidodecahedron (768v/5 — 1290) /531 = 0.8047084 .. . [BHOO0]
Truncated Cube 9(5 — 3v/2)/7 = 0.9737476 . ... [BHO0]
Truncated Dodecahedron (25 + 37+/5)/120 = 0.8977876 . .. [BHOO]
Truncated Icosahedron 0.78498777 ... [BHOO]
Truncated Cuboctahedron 0.8493732. .. [BHOO]
Truncated Icosidodecahedron (19 4+ 10v/5) /50 = 0.8272135. .. [BHOO]
Truncated Tetrahedron 207/304 = 0.6809210. . . [BHOO]
Snub Cube 0.787699. .. [BHOO]
Snub Dodecahedron 0.7886401 . .. [BHOO]
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Preliminary results extended

Torquato and Jiao packing algorithm

Algorithm:

® For N number of stages do
® For M number of cycles do

® For every polyhedron in a unit cell
e With probability p translate the polyhedron in a random direction

within the unit cell or with 1 — p rotate the polyhedron around a
random axis by a random angle.
e Repeat until successful rotation/translation or until J number of
attempts.
® With probability p, contract the unit cell or with the probability
1 — py expand the unit cell by a random strain tensor. Repeat until
success or until L number of attempts.

Restrictions:

® Only the centres of the packed objects have to be contained inside
the unit cell.

® No overlaps between the objects in the unit cell and neighbouring
unit cells.

35/42



Preliminary results extended

Separating axis theorem

Theorem

Two convex polyhedra do not intersect if and only if there exists a
separating plane which is either parallel to a face of one polyhedron or
which is parallel to at least one edge of each polyhedron.

® A consequence of Minkowsky's Separating hyperplane theorem

A and B do not overlap < orthogonal projections of A and B onto
the normal of the separating hyperplane (separating axis) do not
overlap.

® For two general polyhedrons with the same number of faces (F) and
edges (E) there are 2F + E? potential separating axes.

Limits the overlap check only to convex sets.
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Preliminary results extended

Mathematical programming formulation for the 2-simplex periodic
packing problem

The model:
°* A= {pius + pauz | p1,p2 € [0,1]; u1, 2 € R?} a unit cell defined by
the set of generators A = it
U1 U

Wl Wl

o To= {(;51((1)) +62(0) = (3) 10< 1+ ¢ < 1} a 2-simplex centred

at the origin.
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Preliminary results extended

Mathematical programming formulation for the 2-simplex periodic
packing problem

The model (continued):

® N copies of Ty translated by ¢, € R? and rotated by Ry € SO(2):

Tie = {Ack+ Repo | po € To}

e _ [cosB  —sinf
where ¢, = (yk> €[0,1] x [0,1] and Ry = (Sin Ok cos by ) for

k=1,2,...,N and 6 € [0, 27].

® Translates T,i’j of T in the neighbouring unit cells

(i
TL’J:{/\Q) +p | pr € Tk}

for i,j € {—2,-1,0,1,2}.
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Preliminary results extended

Alternative constrains formulation

Define separating hyperplanes by
anx + Bry +9n =0
for h=1,2,3 where ay, By, vn are given by the edges of Ty.

Vertices of Ty:
<X°> € Vert(To)
Yo

Vertices of Ty:

0,0
X —
( ’(‘)0> = Nck + Ry <X0> € Vert(Tx)
Y Yo

Vertices of T,i’j :

ij ; L
<Xlij) =A (c/ + C)) + R (XO> € Vert(T,”)
v’ Yo
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Preliminary results extended

Alternative constrains formulation

® Vertices of Ty in the coordinate system of T,i’j:

N P LN
(530) =7 | Gpo) -7 (o ()
Yk Yk

® Vertices of T,i’j in the coordinate system of Ty:

i i B
Y Y
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Preliminary results extended

Alternative constrains formulation

Int(T%) N Int(T;Y) =0

< min max{ max min v,?’,((J max min vi} >0
ik, 1<h<3 (XO)EVert(To) 1<h<3 (XO)EVert(To) ’
where
0,0 0,0
Vik = ahxk o4 Br¥” + Vh
i \ ;
vhj, = an%)? + By +

.0, Bh, vn are the coefficients of the separating hyperplanes of Ty defined
in previously and k,/ =1,2,...,N, i,j = —2,-1,0,1, 2, excluding the
case when I = k,i =0, =0.
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Preliminary results extended

Experiments: Genetic algorithm

® Tested using Matlab’s Global optimization toolbox genetic algorithm.

(a) (b) (c)

Figure: Output configurations of genetic algorithm for the packing of (a) 2
p=1,(b) 4 p=0.6715, (c) 6 simplexes p = 0.7534 in a unit cell.
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