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Motivation
Molecular crystal

Crystal (IUCr)

• A material is a crystal if it has essentially a sharp diffraction pattern.

Crystal

• A structure built of one or a few different kinds of discrete units,
arranged in more or less modular fashion that extends infinitely.

Molecular Crystal

• The module is a space filling polyhedron (unit cell) containing
molecules.

C. Giacovazzo et al., Fundamentals of Crystallography, 2011.
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Motivation
Crystal structure prediction

• Crystal structure prediction (CSP) - The calculation of crystal
structures of solids from first principles.

• First principles = Quantum electrodynamics

• Calculations are based on:
• Density functional theory - precise but computationally expensive.
• Force field methods - approximations to the first principles but

”fast” to compute (Lennard–Jones potential, Buckingham–Coulomb
potential, . . . ).
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Motivation
Porous materials

Porous organic cages (Cage 3)

Tozawa et al., Porous organic cages., Nat. Mater., 2009, 8, 973.
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Motivation
CSP work flow

G. M. Day and A. I. Cooper, Energy–Structure–Function Maps:
Cartography for Materials Discovery, Advanced Materials, 2018, 30,
1704944.
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Motivation
Energy landscapes

D. J. Wales, Exploring Energy Landscapes, Annu. Rev. Phys. Chem.,
2018, 69,401.
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Motivation
Lennard–Jones potential

ULJ = 4ε
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• ε - Depth of the potential well.

• σ = 2−1/6Rm - The position where the repulsive branch crosses zero.

• r - The distance between two particles.

• − 2Rm
6

r6 - The attractive term.

• Rm
12

r12 - The repulsive term.

https://en.wikipedia.org/wiki/Lennard-Jones_potential
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Motivation
Lennard–Jones potential stationary points

Potential for atoms:
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∑
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Potential for molecules:
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P. K. Doye and D. J. Wales, Saddle points and dynamics of
Lennard-Jones clusters, solids, and supercooledliquids, J. Chem. Phys.,
2002, 116, 3777.
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Motivation
CSP lattice energy landscape

A. Pulido et al., Functional materials discovery using
energy–structure–function maps, Nature, 2017, 543, 657.
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Motivation
Energy vs. density

Observation:

• Dense packed structures tend to have lower energies.

T0 lattice energy landscape.

A. Pulido et al., Functional materials discovery using
energy–structure–function maps, Nature, 2017, 543, 657.
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Motivation
Periodic packing

A periodic packing KP is a system of translates and rotations of a given
set K , that is

KP = {RiK + ai + bj | i = 1, 2, . . . ,N; j = 1, 2, . . . }

if it is a packing into the whole space.

• a1, a2, . . . , aN are elements of a unit cell
• b1,b2, . . . are elements of a lattice
• R1,R2, . . . ,RN ∈ SO(n) = {A ∈ Rn×n : ATA = I , detA = 1}.

(a) (b)

(a) A packing of 8 tetrahedra in a unit
cell forming a module. (b) Periodic
packing based on this module.
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Motivation
Molecular packings

Problem:
• Find a reasonable geometric approximation of a molecule by a

polyhedron K .
• Find dense molecular packings by optimizing periodic packing

density ρ:

ρ =
Nvol(K )

vol(Unit cell)
.

• Use the resulting structures as starting positions in CSP.

Santolini et al., Topological landscapes of porous organic cages,
Nanoscale, 2017, 9, 3280.
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Motivation
Structure seeker

A. I. Kitaigorodsky, Molecular crystals and Molecules, 1973, Academic
Press.
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Preliminary results
Pentacene modelling

• Around every pentacene atom we put 14 points uniformly placed on
a sphere with the radius 0.5573/2.

• Computed the convex hull of the resulting point cloud.

• Resulting polyhedron defined by a triangulation with 58 vertices, 112
edges, 168 faces.

(a)

(b) (c) (d)

(a) Pentacene. (b) Centers of

atoms of pentacene. (c) 14

points placed on a sphere with

radius 0.5573/2. (d) Convex

hull of the resulting point cloud

with centres of pentacene

atoms inside (red).
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Preliminary results
Pentacene modelling

• The radius was computed from a CSP dataset containing 586
pentacene structures, where minimum euclidean distance between
pentacene molecules within every crystal structure was computed.

(a)

(b)

(a) A model of the pentacene crystal structure from the CSP dataset. (b) The crystal

structure where the minimum distance between two pentacene molecules is attained.
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Preliminary results
Monte-Carlo molecular dynamics simulations

Problem statement:
Find a periodic packing Kmin of a given set K that minimizes the volume
of the unit cell

Kmin = arg min
KP

vol(Unit cell)

subject to no intersection constraint,

Ki ∩ Kj = ∅ (i 6= j).

First approach:
• Stochastic optimization methods - problem exploration.
• Molecular dynamics simulations - periodic boundary conditions.
• Well explored approach.
• For example by Salvatore Torquato and Yang Jiao.

S. Torquato and Y. Jiao, Dense packings of polyhedra: Platonic and Archimedean
solids, Phys. Rev. E, vol. 80, 2009.

J. A. Andersona, M. E. Irrgangb, S. C. Glotzer, Scalable Metropolis Monte Carlo for

simulation of hard shapes, Computer Physics Communications, vol. 204, 21, 2016.
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Preliminary results
Simulated annealing periodic packing algorithm

Input:

• Polyhedron specifications - Vertices, edges and faces.

• Initial configuration of the system. -

Algorithm:
• At each step s

• Let the system of N 3–polytopes evolve randomly subject to periodic
boundary conditions.

• Apply standard simulated annealing acceptance rate to the unit cell
contraction/expansion.

P(Kt ← Knew ) =

{
1 if ∆ρ > 0

e
−∆ρ
Tt if ∆ρ ≤ 0

where ∆ρ = ρ(Knew )− ρ(Kt).

Output:

• Density, unit cell parameters, coordinates and rotations of all
particles in the unit cell.
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Preliminary results
Octahedra packing

Left:Initial density 0.1667, Right: Output density 0.9178.

Single unit cell

27 unit cells

Optimal lattice packing density 0.9474.
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Preliminary results
Pentacene packings

(a) (b) (c) (d)

Densities of packings of (a) 2 ρ ≈ 1, (b) 4 ρ = 0.8093 (c) 8 ρ = 0.6940 and
(d) 54 ρ = 0.1521 pentacene models.
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FUTURE DIRECTIONS
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Future directions
Modelling

• Pentacene has 4 main packing types.

• Simulated annealing periodic packing algorithm → β

(a) herringbone; (b) sandwich herringbone; (c) γ and (d) sheet (β).

J. E. Campbell et al., Predicted energy–structure–function maps for the
evaluation of small molecule organic semiconductors., J. Mater. Chem.
C, 2017, 5, 7574.
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Future directions
Modelling

Dense periodic space group packings
• Reduce the number of parameters to:

• Unit cell parameters.
• Position and rotation of one polyhedron in the unit cell.

• Positions of all other polyhedra are given by the space groups
symmetries.
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Future directions
Modelling

Definition (Crystal pattern)
An object in n-dimensional point space E n is called an n-dimensional
crystallographic pattern or, for short, crystal pattern if among its
symmetry operations

1 there are n translations, the translation vectors t1, . . . , tn of which
are linearly independent,

2 all translation vectors, except the zero vector o, have a length of at
least d > 0.

Definition (Space group)
The symmetry group of a three-dimensional crystal pattern is called its
space group.

International Tables for Crystallography Volume A: Space-Group
Symmetry, Ed. T. Hahn, 2005.
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Future directions
Modelling

First steps in plane groups

(a) p2 (b) p2gg (c) p4gm

(d) p3m1 (e) p6mm

Packings of pentagons using genetic algorithm.
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Future directions
Modelling

Densest packing of pentagons

(a) Pentagonal ice-ray (b) pg

https://commons.wikimedia.org/w/index.php?title=File:

2-d_pentagon_packing_dual.svg&oldid=260319594
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Future directions
Information-geometric optimization

• We want our packing procedure to be applicable to different shapes
and different space groups.
• Question: Is there an optimal packing algorithm for an arbitrary

convex set and arbitrary space group?

• No free lunch theorem → Trade off between generality of an
optimization algorithm on a set of problems and its performance.

• Experiments so far show that stochastic optimization methods work
reasonably well.

• Continue to explore stochastic optimization approaches.

• Transfer function f (x) to be optimized to a function F (θ) defined on
the space of probability measures and then perform a natural
gradient descent over F (θ) with respect to the (quadratic)
Wasserstein metric.

Y. Ollivier et al., Information-Geometric Optimization Algorithms: A Unifying Picture

via Invariance Principles, Journal of Machine Learning Research, 2017, 18.
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Future directions
Packing of concave polytopes

• Convex hulls of the organic cage molecule crystal structure overlap.

• Spectrum of α-shapes → There exists α for which the shapes do not
overlap but α + ε there is an overlap for some small ε.

• Overlap checks for concave sets are necessary.
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THANK YOU
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Future directions
Simulated annealing periodic packing algorithm

Algorithm:
• For N number of stages do

• For M number of cycles do
• For every polyhedron in a unit cell
• With probability p translate the polyhedron in a random direction

within the unit cell or with 1− p rotate the polyhedron around a ran-

dom axis by a random angle.

• Repeat until the constrains are satisfied or until J number of at-

tempts.

• With probability pu contract the unit cell or with the probability
1− pu expand the unit cell by a random strain tensor. Repeat until
success or until L number of attempts.

• Accept the new unit cell configuration Knew with probability

P(Kt ← Knew ) =

{
1 if ∆ρ > 0

e
−∆ρ
Tt if ∆ρ ≤ 0

where ∆ρ = ρ(Knew )− ρ(Kt).
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