

The Leverhulme Research Centre for Functional Materials Design

Dense periodic packings in the light of crystal structure prediction

Miloslav Torda Yannis Goulermas Vitaliy Kurlin Graeme M. Day Linjiang Chen

Soft Packings, Nested Clusters, and Condensed Matter

3 October 2019

Imperial College London

Southampton

 α

Group in Topological Data Analysis

Table of Contents

2 [Preliminary results](#page-16-0)

3 [Future directions](#page-23-0)

KOX KORKA EX KEY EL YOGO 3 / 34

MOTIVATION

Molecular crystal

Crystal (IUCr)

• A material is a crystal if it has essentially a sharp diffraction pattern.

Crystal

• A structure built of one or a few different kinds of discrete units, arranged in more or less modular fashion that extends infinitely.

Molecular Crystal

• The module is a space filling polyhedron (unit cell) containing molecules.

C. Giacovazzo et al., Fundamentals of Crystallog[rap](#page-3-0)[hy](#page-5-0)[,](#page-3-0) [20](#page-4-0)[1](#page-5-0)[1.](#page-2-0)

Crystal structure prediction

- • Crystal structure prediction (CSP) - The calculation of crystal structures of solids from first principles.
	- First principles $=$ Quantum electrodynamics
- Calculations are based on:
	- Density functional theory precise but computationally expensive.
	- Force field methods approximations to the first principles but "fast" to compute (Lennard–Jones potential, Buckingham–Coulomb potential, ...).

Porous materials

Porous organic cages (Cage 3)

Tozawa et al., Porous organic cages., Nat. Mater., 2009, 8, 973.

CSP work flow

G. M. Day and A. I. Cooper, Energy–Structure–Function Maps: Cartography for Materials Discovery, Advanced Materials, 2018, 30, 1704944.

Energy landscapes

D. J. Wales, Exploring Energy Landscapes, Annu. Rev. Phys. Chem., 2018, 69,401.

Lennard–Jones potential

$$
U_{LJ} = 4\epsilon \left(\frac{\sigma^{12}}{r^{12}} - \frac{\sigma^6}{r^6}\right) = \epsilon \left(\frac{R_m^{12}}{r^{12}} - \frac{2R_m^{6}}{r^6}\right)
$$

• ϵ - Depth of the potential well.

• $\sigma = 2^{-1/6}R_m$ - The position where the repulsive branch crosses zero.

- \bullet r The distance between two particles.
- $\bullet -\frac{2R_m^6}{r^6}$ $\frac{R_m^2}{r^6}$ - The attractive term.
- \bullet $\frac{R_m^{12}}{12}$ $\frac{K_m}{r^{12}}$ - The repulsive term.

https://en.wikipedia.org/wiki/Lennard-Jones_potential

10 / 34

Lennard–Jones potential stationary points

Potential for atoms:

$$
U_{LJ} = \sum_{i < j} 4\epsilon_{ij} \left(\frac{\sigma_{ij}^{12}}{r_{ij}^{12}} - \frac{\sigma_{ij}^6}{r_{ij}^6} \right)
$$

Potential for molecules:

$$
U_{LJ} = \sum_{a \in A} \sum_{b \in B} 4\epsilon_{ab} \left(\frac{\sigma_{ab}^{12}}{r_{ab}^{12}} - \frac{\sigma_{ab}^{6}}{r_{ab}^{6}} \right)
$$

P. K. Doye and D. J. Wales, Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooledliquids, J. Chem. Phys., 2002, 116, 3777.

 QQ 11 / 34

CSP lattice energy landscape

A. Pulido et al., Functional materials discovery using energy–structure–function maps, Nature, 2017, [543](#page-10-0), [6](#page-12-0)[5](#page-10-0)[7.](#page-11-0) \geq Ω

Energy vs. density

Observation:

• Dense packed structures tend to have lower energies.

T0 lattice energy landscape.

A. Pulido et al., Functional materials discovery using energy–structure–function maps, Nature, 2017, [543](#page-11-0), [6](#page-13-0)[5](#page-11-0)[7.](#page-12-0) \geq

13 / 34

Periodic packing

A periodic packing \mathcal{K}_{P} is a system of translates and rotations of a given set K , that is

$$
\mathcal{K}_P = \{ R_i K + \mathbf{a_i} + \mathbf{b_j} \mid i = 1, 2, \dots, N; \ j = 1, 2, \dots \}
$$

if it is a packing into the whole space.

- a_1, a_2, \ldots, a_N are elements of a unit cell
- \bullet **b**₁, **b**₂, ... are elements of a lattice
- $R_1, R_2, \ldots, R_N \in SO(n) = \{A \in \mathbb{R}^{n \times n} : A^T A = I, \text{ det } A = 1\}.$

(a) A packing of 8 tetrahedra in a unit cell forming a module. (b) Periodic packing based on this module.

Molecular packings

Problem:

- Find a reasonable geometric approximation of a molecule by a polyhedron K.
- Find dense molecular packings by optimizing periodic packing density ρ:

$$
\rho = \frac{N \text{vol}(K)}{\text{vol}(\text{Unit cell})}.
$$

• Use the resulting structures as starting positions in CSP.

Santolini et al., Topological landscapes of porous organic cages, Nanoscale, 2017, 9, 3280.

Structure seeker

A. I. Kitaigorodsky, Molecular crystals and Molecules, 1973, Academic Press.

PRELIMINARY RESULTS

イロメ イ団メ イヨメ イヨメーヨ QQ 17 / 34

Pentacene modelling

- Around every pentacene atom we put 14 points uniformly placed on a sphere with the radius 0.5573/2.
- Computed the convex hull of the resulting point cloud.
- Resulting polyhedron defined by a triangulation with 58 vertices, 112 edges, 168 faces.

(a) Pentacene. (b) Centers of atoms of pentacene. (c) 14 points placed on a sphere with radius 0.5573/2. (d) Convex hull of the resulting point cloud with centres of pentacene atoms inside (red).

Pentacene modelling

• The radius was computed from a CSP dataset containing 586 pentacene structures, where minimum euclidean distance between pentacene molecules within every crystal structure was computed.

(a) A model of the pentacene crystal structure from the CSP dataset. (b) The crystal structure where the minimum distance between two pentacene molecules is attained.

Monte-Carlo molecular dynamics simulations

Problem statement:

Find a periodic packing K_{min} of a given set K that minimizes the volume of the unit cell

$$
\mathcal{K}_{\min} = \arg\min_{\mathcal{K}_P} \text{vol}(\mathsf{Unit} \ \text{cell})
$$

subject to no intersection constraint,

$$
K_i\cap K_j=\emptyset\ (i\neq j).
$$

First approach:

- Stochastic optimization methods problem exploration.
- Molecular dynamics simulations periodic boundary conditions.
- Well explored approach.
- For example by Salvatore Torquato and Yang Jiao.

S. Torquato and Y. Jiao, Dense packings of polyhedra: Platonic and Archimedean solids, Phys. Rev. E, vol. 80, 2009.

J. A. Andersona, M. E. Irrgangb, S. C. Glotzer, Scalable Metropolis Monte Carlo for simula[tio](#page-18-0)n of hard shape[s,](#page-20-0) Computer Physics Communications, [vo](#page-18-0)[l.](#page-19-0) $204,201,2016$ $204,201,2016$ $204,201,2016$ $204,201,2016$ $204,201,2016$ $204,201,2016$ $204,201,2016$ $204,201,2016$ [.](#page-0-0)

Simulated annealing periodic packing algorithm

Input:

- Polyhedron specifications Vertices, edges and faces.
- Initial configuration of the system. -

Algorithm:

- At each step s
	- Let the system of N 3-polytopes evolve randomly subject to periodic boundary conditions.
	- Apply standard simulated annealing acceptance rate to the unit cell contraction/expansion.

$$
P(\mathcal{K}_t \leftarrow \mathcal{K}_{new}) = \begin{cases} 1 & \text{if } \Delta \rho > 0 \\ e^{\frac{-\Delta \rho}{\tau_t}} & \text{if } \Delta \rho \leq 0 \end{cases}
$$

where
$$
\Delta \rho = \rho(\mathcal{K}_{\text{new}}) - \rho(\mathcal{K}_t)
$$
.

Output:

• Density, unit cell parameters, coordinates and rotations of all particles in the unit cell.

Octahedra packing Left: Initial density 0.1667, Right: Output density 0.9178.

Single unit cell

27 unit cells

Optimal lattice packing density 0.9474 0.9474 0.9474 Ω

22 / 34

Pentacene packings

Densities of packings of (a) 2 $\rho \approx 1$, (b) 4 $\rho = 0.8093$ (c) 8 $\rho = 0.6940$ and (d) 54 $\rho = 0.1521$ pentacene models.

FUTURE DIRECTIONS

メロメメ 御 メメ きょくきょうき QQ 24 / 34

Modelling

- Pentacene has 4 main packing types.
- Simulated annealing periodic packing algorithm $\rightarrow \beta$

(a) herringbone; (b) sandwich herringbone; (c) γ and (d) sheet (β).

J. E. Campbell et al., Predicted energy–structure–function maps for the evaluation of small molecule organic semiconductors., J. Mater. Chem. C, 2017, 5, 7574.

Modelling

Dense periodic space group packings

- Reduce the number of parameters to:
	- Unit cell parameters.
	- Position and rotation of one polyhedron in the unit cell.
- Positions of all other polyhedra are given by the space groups symmetries.

Modelling

Definition (Crystal pattern)

An object in *n*-dimensional point space $Eⁿ$ is called an *n*-dimensional crystallographic pattern or, for short, crystal pattern if among its symmetry operations

- **1** there are *n* translations, the translation vectors t_1, \ldots, t_n of which are linearly independent,
- 2 all translation vectors, except the zero vector **o**, have a length of at least $d > 0$.

Definition (Space group)

The symmetry group of a three-dimensional crystal pattern is called its space group.

International Tables for Crystallography Volume A: Space-Group Symmetry, Ed. T. Hahn, 2005.

Modelling

First steps in plane groups

Packings of pentagons using genetic algorithm.

Modelling

Densest packing of pentagons

[https://commons.wikimedia.org/w/index.php?title=File:](https://commons.wikimedia.org/w/index.php?title=File:2-d_pentagon_packing_dual.svg&oldid=260319594) [2-d_pentagon_packing_dual.svg&oldid=260319594](https://commons.wikimedia.org/w/index.php?title=File:2-d_pentagon_packing_dual.svg&oldid=260319594)

Information-geometric optimization

- We want our packing procedure to be applicable to different shapes and different space groups.
	- Question: Is there an optimal packing algorithm for an arbitrary convex set and arbitrary space group?
- No free lunch theorem \rightarrow Trade off between generality of an optimization algorithm on a set of problems and its performance.
- Experiments so far show that stochastic optimization methods work reasonably well.
- Continue to explore stochastic optimization approaches.
- Transfer function $f(x)$ to be optimized to a function $F(\theta)$ defined on the space of probability measures and then perform a natural gradient descent over $F(\theta)$ with respect to the (quadratic) Wasserstein metric.

Y. Ollivier et al., Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles, Journal of Machine Learning Research, 2017, 18.

Packing of concave polytopes

- Convex hulls of the organic cage molecule crystal structure overlap.
- Spectrum of α -shapes \rightarrow There exists α for which the shapes do not overlap but $\alpha + \epsilon$ there is an overlap for some small ϵ .
- Overlap checks for concave sets are necessary.

THANK YOU

K ロ X x 何 X x モ X x モ X = 日 → つ Q Q → 32 / 34

APPENDIX

K ロ X x 何 X x モ X x モ X = 日 → つ Q Q → 33 / 34

Simulated annealing periodic packing algorithm

Algorithm:

- For N number of stages do
	- For M number of cycles do
		- For every polyhedron in a unit cell
			- With probability p translate the polyhedron in a random direction within the unit cell or with $1 - p$ rotate the polyhedron around a random axis by a random angle.
			- Repeat until the constrains are satisfied or until J number of attempts.
	- With probability p_u contract the unit cell or with the probability $1 - p_u$ expand the unit cell by a random strain tensor. Repeat until success or until L number of attempts.
	- Accept the new unit cell configuration \mathcal{K}_{new} with probability

$$
P(\mathcal{K}_t \leftarrow \mathcal{K}_{new}) = \begin{cases} 1 & \text{if } \Delta \rho > 0 \\ e^{\frac{-\Delta \rho}{\tau_t}} & \text{if } \Delta \rho \leq 0 \end{cases}
$$

where $\Delta \rho = \rho(\mathcal{K}_{new}) - \rho(\mathcal{K}_{t}).$