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Crystal Structure Prediction (CSP)
motivation

• An approach to accelerate Molecular CSP solvers:
• Energy minimization → Geometric packing density maximization

(Left) A geometric representation of pentacene as the convex hull of the atomic positions of the
molecule with an offset given by hydrogen’s van der Waals radius of 1.09Å. The dots symbolize
atomic positions of (blue) hydrogen and (black) carbon. (Right) Visualization of the ETRPA
output configuration of the densest p2-packing of the pentacene representation with density of
0.9533821 and resembles the configuration of single layer pentacene thin-film on graphite surface
found in W. Chen, H. Huang, A. Thye, and S. Wee, Molecular orientation transition of organic
thin films on graphite: the effect of intermolecular electrostatic and interfacial dispersion forces,
Chemical communications, (2008), pp. 4276–4278.
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Crystallographic Symmetry Group (CSG)
packing

• Configuration space: Crystallographic Symmetry Group (CSG)

• Discrete group of isometries of Rn containing a lattice subgroup
• CSG packing

KG =
⋃
g∈G

gK ,

int (giK) ∩ int
(
gjK

)
= ∅, ∀ gi , gj ∈ G , gi ̸= gj

• G - CSG
• K - Compact subset of Rn

The 2D periodic structure with the p2mg plane group symmetry where K is a regular convex
pentagon with the packing density of approximately 0.8541019. (Left) A single primitive cell.
(Right) 9 primitive cells. The blue parallelogram denotes the primitive cell of the respective
configuration. Colors represent symmetry operations modulo lattice translations.
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CSG packing problem
• CSG packing problem

Kmax = argmax
KG :G∈G

ρ (KG ) , G = {H|H ∼= G}.

• ρ (KG ) =
Narea(K)
det(U)

- 2D packing density.
• U - Unit cell.
• N - number of symmetry operation modulo lattice translations.

CSG packings where G of type p2 and K is a regular octagon. (Left) packing with density

ρ(Kp2) ≊ 0.413705 and (right) optimal packing with density ρ(Kp2) =
4+4

√
2

5+4
√

2
≊ 0.90616 1. The

blue parallelogram denotes the primitive cell of the respective configuration. Colors represent
symmetry operations modulo lattice translations.

1Rogers, C. A. (1951). The closest packing of convex two-dimensional domains.
Acta Mathematica, 86(1), 309-321. 6 / 30
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Entropic Trust Region Packing Algorithm
(ETRPA)

• Stochastic relaxation: θ̃ = argmaxθ∈Θ

∫
x∈X F(x)dP(θ), dP(θ) ∈ S .

• Non-euclidean trust region method over S = {dP(θ) | θ ∈ Θ ⊆ Rn}
(S has a dually flat Riemannian structure).

• Since the lattice subgroup L of a CSG induces quotient space
Rn/L ≈ T n =⇒ dP(θ) ∈ S are defined on T n.
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600 realizations of the Extended Multivariate von Mises distribution defined on an T 6 from a
single run of the ETRPA. (Left) Initial distribution and (Right) output distribution1.

1Further information on ETRPA: M. Torda, J. Y. Goulermas, R. Púček and
V. Kurlin, Entropic trust region for densest crystallographic symmetry group
packings, arXiv:2202.11959. To appear in SIAM Journal on Scientific Computing. 7 / 30
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Symmetries of maximally dense plane
group packings of regular polygons

• Applied ETRPA to search for maximally dense packings of regular
convex polygons (n-gons)

• in all 2D CSG isomorphism classes - 17 plane group types.
• for n = 3, 4, . . . , 27, 30, 35, 36, 37, 39, 42, 48, 55, 89 and the disc.
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The colored rank table. For every n = 3, . . . , 35 plane groups are ranked according to densities of
the densest packing attained in each plane group, and a color is assigned based on rank r ranging
from one to rmax .
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Densest p2, pg, p2gg, p3, and p1 packings

p2 p2gg pg p3 p1

Densest configurations of (from top to bottom) pentagon, heptagon, enneagon, and dodecagon
in plane groups p2, p2gg , pg , p3, and p1 with the following densities: pentagon in
p2/p2gg/pg ≊ 0.92131, p3 ≊ 0.87048 and p1 ≊ 0.81725; heptagon in p2/p2gg/pg ≊ 0.89269,
p3 ≊ 0.88085 and p1 ≊ 0.86019; enneagon in p2 ≊ 0.90103, p2gg ≊ 0.89989, pg ≊ 0.89860
and p3/p1 ≊ 0.88773; dodecagon in p2/p2gg/pg/p3/p1 ≊ 0.92820. The blue parallelogram
denotes the primitive cell of the respective configuration. Colors represent symmetry operations
modulo lattice translations. 9 / 30



Densest p2mg, cm, and p4 packings

p2mg cm p4

Densest configurations of (top) heptagon, (middle) endecagon, and (bottom) dodecagon in plane
groups p2mg , cm, and p4 with the following densities: heptagon in p2mg/cm ≊ 0.84226 and
p4 ≊ 0.84219; endecagon in p2mg ≊ 0.83116, cm ≊ 0.82795 and p4 ≊ 0.83780; dodecagon in
p2mg/cm/p4 ≊ 0.86156. The blue parallelogram denotes the primitive cell of the respective
configuration. Colors represent symmetry operations modulo lattice translations.
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Densest p4gm, c2mm, pm, and p2mm
packings

p4gm c2mm p2mm pm
Densest configurations of (top) pentagon, (middle) octagon, and (bottom) decagon in plane
groups p4gm, c2mm, p2mm and pm with the following densities: pentagon in p4gm ≊ 0.71119,
c2mm ≊ 0.71714 and p2mm/pm ≊ 0.69098; octagon in p4gm/c2mm/p2mm/pm ≊ 0.82842;
decagon in p4gm ≊ 0.77205 and c2mm/p2mm/pm ≊ 0.77254. The blue parallelogram denotes
the primitive cell of the respective configuration. Colors represent symmetry operations modulo
lattice translations. 11 / 30



Densest p6, p31m, p3m1, p4mm, and
p6mm packings

p6 p31m p3m1 p4mm p6mm

Densest configurations of (from top to bottom) hexagon, octagon, and dodecagon in plane
groups p6, p31m, p3m1, p4mm, and p6mm with the following densities: hexagon in
p6 ≊ 0.85714, p31m ≊ 0.71999, p3m1 ≊ 0.66666, p4mm ≊ 0.52148 and p6mm ≊ 0.47999;
octagon in p6 ≊ 0.76438, p31m ≊ 0.71565, p3m1 ≊ 0.57980, p4mm ≊ 0.56854 and
p6mm ≊ 0.48235; dodecagon in p6 ≊ 0.79560, p31m ≊ 0.74613, p3m1 ≊ 0.61880,
p4mm ≊ 0.53589 and p6mm ≊ 0.49742. The blue parallelogram denotes the primitive cell of the
respective configuration. Colors represent symmetry operations modulo lattice translations.
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Plane group packing conjectures
Conjecture 1
Densities of the densest p2, pg, and p2gg packings are equal for all, but
centrally nonsymmetric n-gons with three-fold rotational symmetry and
n ≥ 9, densities of the denses p2, pg, p2gg, and p1 packings are equal
for all centrally symmetric n-gons, and densities of the densest p2, pg,
p2gg, p1, and p3 packings are equal for all n-gons containing a six-fold
rotational symmetry.
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The colored rank table. For every n = 3, . . . , 35 plane groups are ranked according to densities of
the densest packing attained in each plane group, and a color is assigned based on rank r ranging
from one to rmax .
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Plane group packing conjectures
Conjecture 2
Densities of the densest p2mg and cm packings are equal for all but
n-gons with a 12k − 1 and 12k +1 rotational symmetry where k ∈ N and
densities of densest p2mg, cm, and p4 packings are equal for all n-gons
containing a 12-fold rotational symmetry.
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Plane group packing conjectures
Conjecture 3
Densities of the densest pm and p2mm packings are equal for all n-gons,
densities of the densest c2mm, pm and p2mm packings are equal for all
centrally symmetric n-gons, and densities of the densest p4gm, c2mm,
pm, and p2mm packings are equal for all n-gons containing a four-fold
rotational symmetry.
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Relationships between
p2/p2gg/pg/p3/p1, p6, p3m1, p31m

and p6mm packing densities of a hexagon
• ρ

(
Kp2/p2gg/pg/p3/p1max

)
= 7

6ρ
(
Kp6max

)
= 3

2ρ
(
Kp3m1max

)

ρ
(
Kp31mmax

)
= 3

2ρ
(
Kp6mmmax

)
• Numerically, these relationships approximately hold for all n -gons

with 6-fold rotational symmetry.

p1 p6 p3m1

p31m p6mm
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Relationships between
p4mg/c2mm/pm/p2mm and p4mm

packing densities of an octagon
• ρ

(
Kp4mg/c2mm/pm/p2mmmax

)
= 3+2

√
2

4 ρ
(
Kp4mmmax

)

• Numerically, these relationships approximately hold for all n -gons
with 8-fold rotational symmetry.

p4gm p4mm
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Relationships between
p2/p2gg/pg/p3/p1, p2mg/cm/p4,
p4mg/c2mm/pm/p2mm and p31m

packing densities of a dodecagon
• ρ

(
Kp2/p2gg/pg/p3/p1max

)
= 3+2

√
3

6 ρ
(
Kp2mg/cm/p4max

)
=

= 2
√
3

3 ρ
(
Kp4mg/c2mm/pm/p2mmmax

)
= 2+

√
3

3 ρ
(
Kp31mmax

)

• Numerically, these relationships approximately hold for all n -gons
with 12-fold rotational symmetry.
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Relationships between
p2/p2gg/pg/p3/p1, p2mg/cm/p4,
p4mg/c2mm/pm/p2mm and p31m

packing densities of a 24-gon
• ρ

(
Kp2/p2gg/pg/p3/p1max

)
= 3+2

√
3

6 ρ
(
Kp2mg/cm/p4max

)
=

= 2
√
3

3 ρ
(
Kp4mg/c2mm/pm/p2mmmax

)
= 7

6ρ
(
Kp6max

)
=

= 2+
√
3

3 ρ
(
Kp31mmax

)
= 3

2ρ
(
Kp3m1max

)
= 3

√
3+2

√
6

6 ρ
(
Kp4mmmax

)
=

= 2+
√
3

2 ρ
(
Kp6mmmax

)

p1 p4 p4gm p6

p31m p3m1 p4mm p6mm 19 / 30



p2/p2gg/pg/p3/p1 packing of a disc
• ρ

(
Kp2/p2gg/pg/p3/p1max

)
=

√
3
6 π = 0.9068996 . . .

• Optimal lattice packing
• Lagrange, J. L. (1773). Recherches d’arithmétique. Nouveaux

Mémoires de l’Académie de Berlin.
• Gauss, C. F. (1840). Untersuchungen über die Eigenschaften der

positiven ternären quadratischen Formen von Ludwig August Seeber.
J. reine angew. Math, 20(312-320), 3.

(Left) p1 packing of a disc, (middle) the corresponding 36 regular tiling, and
(right) its dual tiling1.

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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p2mg/cm/p4 packing of a disc
• ρ

(
Kp2mg/cm/p4max

)
=

(
2−

√
3
)
π = 0.8417872 . . .

(Top) p2mg packing of a disc, (bottom left) the corresponding 33.42

semiregular tiling, and (bottom right) its dual tiling1.

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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p2mg/cm/p4 packing of a disc

• ρ
(
Kp2mg/cm/p4max

)
=

(
2−

√
3
)
π = 0.8417872 . . .

(Left) p4 packing of a disc, (middle) the corresponding 32.4.3.4 semiregular
tiling, and (right) its dual tiling1.

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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p4mg/c2mm/pm/p2mm packing of a
disc

• ρ
(
Kp4mg/c2mm/pm/p2mmmax

)
= π

4 = 0.7853981 . . .

(Left) p4mg packing of a disc, (middle) the corresponding 44 semiregular
tiling, and (right) its dual tiling1 (self-dual).

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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p6 packing of a disc

• ρ
(
Kp6max

)
=

√
3
7 π = 0.7773425 . . .

(Left) p6 packing of a disc, (middle) the corresponding 34.6 semiregular tiling,
and (right) its dual tiling1 (self-dual).

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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p31m packing of a disc

• ρ
(
Kp31mmax

)
= 2

√
3−3
2 π = 0.7290091 . . .

(Left) p31m packing of a disc, (middle) the corresponding 3.4.6.4 semiregular
tiling, and (right) its dual tiling1.

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings
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p3m1 packing of a disc

• ρ
(
Kp3m1max

)
=

√
3
9 π = 0.6045997 . . .

(Left) p31m packing of a disc, (middle) the corresponding 63 regular tiling,
and (right) its dual tiling1.

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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p4mm packing of a disc

• ρ
(
Kp4mmmax

)
=

(
3− 2

√
2
)
π = 0.5390120 . . .

(Left) p4mm packing of a disc, (middle) the corresponding 4.82 semiregular
tiling, and (right) its dual tiling1.

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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p6mm packing of a disc

• ρ
(
Kp6mmmax

)
= 2

√
3−3
3 π = 0.4860060 . . .

(Left) p6mm packing of a disc, (middle) the corresponding 4.6.12 semiregular
tiling, and (right) its dual tiling1.

1List of Euclidean uniform tilings. (2023, April 2). In Wikipedia.
https://en.wikipedia.org/wiki/List of Euclidean uniform tilings.
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Williams, R. (1979). Circle packings, plane tessellations, and networks. The
Geometrical Foundation of Natural Structure: A Source Book of Design, 34-47.
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