The Leverhulme Research Centre for Functional Materials Design

Symmetries of maximally dense plane group packings of regular convex polygons.

Miloslav Torda

Oberseminar Algebra

Acknowledgments

COST Action CA21109 - Cartan geometry, Lie, Integrable Systems, quantum group Theories for Applications (CaLISTA) Short-Term Scientific Mission.

- M. Torda, J. Y. Goulermas, V. Kurlin and G. M. Day, Densest plane group packings of regular polygons, Physical Review E 106 (5), 054603 (2022).

Crystal Structure Prediction (CSP) motivation

- An approach to accelerate Molecular CSP solvers:
- Energy minimization \rightarrow Geometric packing density maximization

Crystal Structure Prediction (CSP) motivation

- An approach to accelerate Molecular CSP solvers:
- Energy minimization \rightarrow Geometric packing density maximization

Crystal Structure Prediction (CSP) motivation

- An approach to accelerate Molecular CSP solvers:
- Energy minimization \rightarrow Geometric packing density maximization

(Left) A geometric representation of pentacene as the convex hull of the atomic positions of the molecule with an offset given by hydrogen's van der Waals radius of $1.09 \AA$. The dots symbolize atomic positions of (blue) hydrogen and (black) carbon. (Right) Visualization of the ETRPA output configuration of the densest $p 2$-packing of the pentacene representation with density of 0.9533821 and resembles the configuration of single layer pentacene thin-film on graphite surface found in W. Chen, H. Huang, A. Thye, and S. Wee, Molecular orientation transition of organic thin films on graphite: the effect of intermolecular electrostatic and interfacial dispersion forces, Chemical communications, (2008), pp. 4276-4278.

Crystallographic Symmetry Group (CSG)
packing

- Configuration space: Crystallographic Symmetry Group (CSG)

Crystallographic Symmetry Group (CSG)

 packing- Configuration space: Crystallographic Symmetry Group (CSG)
- Discrete group of isometries of \mathbb{R}^{n} containing a lattice subgroup

Crystallographic Symmetry Group (CSG)

packing

- Configuration space: Crystallographic Symmetry Group (CSG)
- Discrete group of isometries of \mathbb{R}^{n} containing a lattice subgroup
- CSG packing

$$
\mathcal{K}_{G}=\bigcup_{g \in G} g K
$$

$$
\operatorname{int}\left(g_{i} K\right) \cap \operatorname{int}\left(g_{j} K\right)=\emptyset, \quad \forall g_{i}, g_{j} \in G, \quad g_{i} \neq g_{j}
$$

- G - CSG
- K - Compact subset of \mathbb{R}^{n}

The 2D periodic structure with the $p 2 m g$ plane group symmetry where K is a regular convex pentagon with the packing density of approximately 0.8541019 . (Left) A single primitive cell. (Right) 9 primitive cells. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent symmetry operations modulo lattice translations.

CSG packing problem

- CSG packing problem

$$
\mathcal{K}_{\max }=\underset{\mathcal{K}_{G}: G \in \mathcal{G}}{\operatorname{argmax}} \rho\left(\mathcal{K}_{G}\right), \mathcal{G}=\{H \mid H \cong G\} .
$$

- $\rho\left(\mathcal{K}_{G}\right)=\frac{\operatorname{Narea}(K)}{\operatorname{det}(\boldsymbol{U})}-2 \mathrm{D}$ packing density.
- U - Unit cell.
- N - number of symmetry operation modulo lattice translations.

[^0] Acta Mathematica, 86(1), 309-321.

CSG packing problem

- CSG packing problem

$$
\mathcal{K}_{\max }=\underset{\mathcal{K}_{G}: G \in \mathcal{G}}{\operatorname{argmax}} \rho\left(\mathcal{K}_{G}\right), \mathcal{G}=\{H \mid H \cong G\} .
$$

- $\rho\left(\mathcal{K}_{G}\right)=\frac{\operatorname{Narea}(K)}{\operatorname{det}(\mathbf{U})}-2 \mathrm{D}$ packing density.
- U - Unit cell.
- N - number of symmetry operation modulo lattice translations.

[^1]
CSG packing problem

- CSG packing problem

$$
\mathcal{K}_{\max }=\underset{\mathcal{K}_{G}: G \in \mathcal{G}}{\operatorname{argmax}} \rho\left(\mathcal{K}_{G}\right), \mathcal{G}=\{H \mid H \cong G\} .
$$

- $\rho\left(\mathcal{K}_{G}\right)=\frac{\operatorname{Narea}(K)}{\operatorname{det}(\mathbf{U})}-2 \mathrm{D}$ packing density.
- U - Unit cell.
- N - number of symmetry operation modulo lattice translations.

CSG packings where \mathcal{G} of type $p 2$ and K is a regular octagon. (Left) packing with density $\rho\left(\mathcal{K}_{p 2}\right) \approx 0.413705$ and (right) optimal packing with density $\rho\left(\mathcal{K}_{p 2}\right)=\frac{4+4 \sqrt{2}}{5+4 \sqrt{2}} \approx 0.90616^{1}$. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent symmetry operations modulo lattice translations.

[^2]
Entropic Trust Region Packing Algorithm (ETRPA)

- Stochastic relaxation: $\tilde{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \int_{\mathbf{x} \in \mathcal{X}} \mathbf{F}(\mathbf{x}) d P(\boldsymbol{\theta}), d P(\boldsymbol{\theta}) \in S$.
${ }^{1}$ Further information on ETRPA: M. Torda, J. Y. Goulermas, R. Púček and V. Kurlin, Entropic trust region for densest crystallographic symmetry group packings, arXiv:2202.11959. To appear in SIAM Journal on Scientific Computing.

Entropic Trust Region Packing Algorithm (ETRPA)

- Stochastic relaxation: $\tilde{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \int_{\mathbf{x} \in \mathcal{X}} \mathbf{F}(\mathbf{x}) d P(\boldsymbol{\theta}), d P(\boldsymbol{\theta}) \in S$.
- Non-euclidean trust region method over $S=\left\{d P(\boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^{n}\right\}$ (S has a dually flat Riemannian structure).

[^3]
Entropic Trust Region Packing Algorithm (ETRPA)

- Stochastic relaxation: $\tilde{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \int_{\mathbf{x} \in \mathcal{X}} \mathbf{F}(\mathbf{x}) d P(\boldsymbol{\theta}), d P(\boldsymbol{\theta}) \in S$.
- Non-euclidean trust region method over $S=\left\{d P(\boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^{n}\right\}$ (S has a dually flat Riemannian structure).
- Since the lattice subgroup L of a CSG induces quotient space $\mathbb{R}^{n} / L \approx T^{n} \Longrightarrow d P(\theta) \in S$ are defined on T^{n}.
${ }^{1}$ Further information on ETRPA: M. Torda, J. Y. Goulermas, R. Púček and
V. Kurlin, Entropic trust region for densest crystallographic symmetry group packings, arXiv:2202.11959. To appear in SIAM Journal on Scientific Computing.

Entropic Trust Region Packing Algorithm (ETRPA)

- Stochastic relaxation: $\tilde{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \int_{\mathbf{x} \in \mathcal{X}} \mathbf{F}(\mathbf{x}) d P(\boldsymbol{\theta}), d P(\boldsymbol{\theta}) \in S$.
- Non-euclidean trust region method over $S=\left\{d P(\boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^{n}\right\}$ (S has a dually flat Riemannian structure).
- Since the lattice subgroup L of a CSG induces quotient space $\mathbb{R}^{n} / L \approx T^{n} \Longrightarrow d P(\theta) \in S$ are defined on T^{n}.

${ }^{1}$ Further information on ETRPA: M. Torda, J. Y. Goulermas, R. PÚček and V. Kurlin, Entropic trust region for densest crystallographic symmetry group packings, arXiv:2202.11959. To appear in SIAM Journal on Scientific Computing.

Entropic Trust Region Packing Algorithm (ETRPA)

- Stochastic relaxation: $\tilde{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \int_{\mathbf{x} \in \mathcal{X}} \mathbf{F}(\mathbf{x}) d P(\boldsymbol{\theta}), d P(\boldsymbol{\theta}) \in S$.
- Non-euclidean trust region method over $S=\left\{d P(\boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^{n}\right\}$ (S has a dually flat Riemannian structure).
- Since the lattice subgroup L of a CSG induces quotient space $\mathbb{R}^{n} / L \approx T^{n} \Longrightarrow d P(\theta) \in S$ are defined on T^{n}.

600 realizations of the Extended Multivariate von Mises distribution defined on an T^{6} from a single run of the ETRPA. (Left) Initial distribution and (Right) output distribution ${ }^{1}$.
${ }^{1}$ Further information on ETRPA: M. Torda, J. Y. Goulermas, R. PÚček and V. Kurlin, Entropic trust region for densest crystallographic symmetry group packings, arXiv:2202.11959. To appear in SIAM Journal on Scientific Computing.

Symmetries of maximally dense plane group packings of regular polygons

- Applied ETRPA to search for maximally dense packings of regular convex polygons (n-gons)

Symmetries of maximally dense plane group packings of regular polygons

- Applied ETRPA to search for maximally dense packings of regular convex polygons (n-gons)
- in all 2D CSG isomorphism classes - 17 plane group types.

Symmetries of maximally dense plane group packings of regular polygons

- Applied ETRPA to search for maximally dense packings of regular convex polygons (n-gons)
- in all 2D CSG isomorphism classes - 17 plane group types.
- for $n=3,4, \ldots, 27,30,35,36,37,39,42,48,55,89$ and the disc.

Symmetries of maximally dense plane group packings of regular polygons

- Applied ETRPA to search for maximally dense packings of regular convex polygons (n-gons)
- in all 2D CSG isomorphism classes - 17 plane group types.
- for $n=3,4, \ldots, 27,30,35,36,37,39,42,48,55,89$ and the disc.

The colored rank table. For every $n=3, \ldots, 35$ plane groups are ranked according to densities of the densest packing attained in each plane group, and a color is assigned based on rank r ranging from one to $r_{\text {max }}$.

Densest p2, pg, p2gg, p3, and p1 packings

Densest configurations of (from top to bottom) pentagon, heptagon, enneagon, and dodecagon in plane groups $p 2, p 2 g g, p g, p 3$, and $p 1$ with the following densities: pentagon in $p 2 / p 2 g g / p g \approx 0.92131, p 3 \approx 0.87048$ and $p 1 \approx 0.81725$; heptagon in $p 2 / p 2 g g / p g \approx 0.89269$, $p 3 \approx 0.88085$ and $p 1 \approx 0.86019$; enneagon in $p 2 \approx 0.90103, p 2 g g \approx 0.89989, p g \approx 0.89860$ and $p 3 / p 1 \approx 0.88773$; dodecagon in $p 2 / p 2 g g / p g / p 3 / p 1 \approx 0.92820$. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent symmetry operations modulo lattice translations.

Densest p2mg, cm, and p4 packings

Densest configurations of (top) heptagon, (middle) endecagon, and (bottom) dodecagon in plane groups $p 2 \mathrm{mg}, \mathrm{cm}$, and $p 4$ with the following densities: heptagon in $p 2 \mathrm{mg} / \mathrm{cm} \approx 0.84226$ and $p 4 \approx 0.84219$; endecagon in $p 2 m g \approx 0.83116, c m \approx 0.82795$ and $p 4 \approx 0.83780$; dodecagon in $p 2 \mathrm{mg} / \mathrm{cm} / \mathrm{p} 4 \approx 0.86156$. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent symmetry operations modulo lattice translations.

Densest p4gm, c2mm, pm, and p2mm

packings

p 4 gm
c 2 mm
p2mm
pm
Densest configurations of (top) pentagon, (middle) octagon, and (bottom) decagon in plane groups $p 4 g m, c 2 m m, p 2 m m$ and $p m$ with the following densities: pentagon in $p 4 g m \approx 0.71119$, $c 2 \mathrm{~mm} \approx 0.71714$ and $p 2 \mathrm{~mm} / \mathrm{pm} \approx 0.69098$; octagon in $p 4 \mathrm{gm} / c 2 \mathrm{~mm} / \mathrm{p} 2 \mathrm{~mm} / \mathrm{pm} \approx 0.82842$; decagon in $p 4 g m \approx 0.77205$ and $c 2 \mathrm{~mm} / \mathrm{p} 2 \mathrm{~mm} / \mathrm{pm} \cong 0.77254$. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent symmetry operations modulo lattice translations.

Densest p6, p31m, p3m1, p4mm, and p6mm packings

p6

p31m

p3m1

p4mm

p6mm

Densest configurations of (from top to bottom) hexagon, octagon, and dodecagon in plane groups $p 6, p 31 m, p 3 m 1, p 4 m m$, and $p 6 \mathrm{~mm}$ with the following densities: hexagon in $p 6 \approx 0.85714, p 31 \mathrm{~m} \approx 0.71999, p 3 m 1 \approx 0.66666, p 4 \mathrm{~mm} \approx 0.52148$ and $p 6 \mathrm{~mm} \approx 0.47999$; octagon in $p 6 \approx 0.76438, p 31 m \approx 0.71565, p 3 m 1 \approx 0.57980, p 4 m m \approx 0.56854$ and $p 6 \mathrm{~mm} \approx 0.48235$; dodecagon in $p 6 \approx 0.79560, p 31 m \approx 0.74613, p 3 m 1 \approx 0.61880$, $p 4 \mathrm{~mm} \approx 0.53589$ and $p 6 \mathrm{~mm} \approx 0.49742$. The blue parallelogram denotes the primitive cell of the respective configuration. Colors represent symmetry operations modulo lattice translations.

Plane group packing conjectures

Conjecture 1

Densities of the densest p2, pg, and p2gg packings are equal for all, but centrally nonsymmetric n-gons with three-fold rotational symmetry and $n \geq 9$, densities of the denses $p 2, p g, p 2 g g$, and $p 1$ packings are equal for all centrally symmetric n-gons, and densities of the densest p2, pg, $p 2 g g, p 1$, and $p 3$ packings are equal for all n-gons containing a six-fold rotational symmetry.

The colored rank table. For every $n=3, \ldots, 35$ plane groups are ranked according to densities of the densest packing attained in each plane group, and a color is assigned based on rank r ranging from one to $r_{\text {max }}$.

Plane group packing conjectures

Conjecture 2

Densities of the densest p2mg and cm packings are equal for all but n-gons with a $12 k-1$ and $12 k+1$ rotational symmetry where $k \in \mathbb{N}$ and densities of densest p2mg, cm, and p4 packings are equal for all n-gons containing a 12 -fold rotational symmetry.

The colored rank table. For every $n=3, \ldots, 35$ plane groups are ranked according to densities of the densest packing attained in each plane group, and a color is assigned based on rank r ranging from one to $r_{\text {max }}$.

Plane group packing conjectures

Conjecture 3

Densities of the densest $p m$ and $p 2 m m$ packings are equal for all n-gons, densities of the densest c2mm, pm and p2mm packings are equal for all centrally symmetric n-gons, and densities of the densest p4gm, c2mm, $p m$, and $p 2 \mathrm{~mm}$ packings are equal for all n-gons containing a four-fold rotational symmetry.

The colored rank table. For every $n=3, \ldots, 35$ plane groups are ranked according to densities of the densest packing attained in each plane group, and a color is assigned based on rank r ranging from one to $r_{\text {max }}$.

Relationships between $p 2 / p 2 g g / p g / p 3 / p 1, p 6, p 3 m 1, p 31 m$ and $p 6 \mathrm{~mm}$ packing densities of a hexagon - $\rho\left(\mathcal{K}_{p 2 / \rho 2 g g / p g / p 3 / p 1_{\text {max }}}\right)=\frac{7}{6} \rho\left(\mathcal{K}_{p 6_{\text {max }}}\right)=\frac{3}{2} \rho\left(\mathcal{K}_{p 3 m 1_{\text {max }}}\right)$

p1

p6

p3m1

Relationships between

p2/p2gg/pg/p3/p1, p6, p3m1, p31m

 and $p 6 \mathrm{~mm}$ packing densities of a hexagon- $\rho\left(\mathcal{K}_{p 2 / \rho 2 g g / p g / p 3 / p 1_{\text {max }}}\right)=\frac{7}{6} \rho\left(\mathcal{K}_{\rho 6_{\text {max }}}\right)=\frac{3}{2} \rho\left(\mathcal{K}_{p 3 m 1_{\text {max }}}\right)$ $\rho\left(\mathcal{K}_{\rho 31 m_{\text {max }}}\right)=\frac{3}{2} \rho\left(\mathcal{K}_{\rho 6 m m_{\text {max }}}\right)$

p1

p6

p3m1

p31m

p6mm

Relationships between

p2/p2gg/pg/p3/p1, p6, p3m1, p31m

 and $p 6 \mathrm{~mm}$ packing densities of a hexagon- $\rho\left(\mathcal{K}_{p 2 / p 2 g g / p g / p 3 / p 1_{\text {max }}}\right)=\frac{7}{6} \rho\left(\mathcal{K}_{\rho 6_{\text {max }}}\right)=\frac{3}{2} \rho\left(\mathcal{K}_{p 3 m 1_{\text {max }}}\right)$ $\rho\left(\mathcal{K}_{\rho 31 m_{\text {max }}}\right)=\frac{3}{2} \rho\left(\mathcal{K}_{\rho 6 m_{\text {max }}}\right)$
- Numerically, these relationships approximately hold for all n-gons with 6 -fold rotational symmetry.

p1

p6

p3m1

p31m

p6mm

Relationships between

$p 4 m g / c 2 m m / p m / p 2 m m$ and $p 4 m m$

 packing densities of an octagon- $\rho\left(\mathcal{K}_{p 4 m \mathrm{~m} / \mathrm{c} 2 m m / p m / p 2 m m_{\text {max }}}\right)=\frac{3+2 \sqrt{2}}{4} \rho\left(\mathcal{K}_{p 4 m m_{\text {max }}}\right)$

Relationships between

$p 4 m g / c 2 m m / p m / p 2 m m$ and $p 4 m m$
 packing densities of an octagon

- $\rho\left(\mathcal{K}_{p 4 m g / c 2 m m / p m / p 2 m m_{\text {max }}}\right)=\frac{3+2 \sqrt{2}}{4} \rho\left(\mathcal{K}_{p 4 m m_{\text {max }}}\right)$
- Numerically, these relationships approximately hold for all n-gons with 8 -fold rotational symmetry.

p4gm

p4mm

Relationships between

$$
\begin{aligned}
& p 2 / p 2 g g / p g / p 3 / p 1, p 2 m g / c m / p 4, \\
& p 4 m g / c 2 m m / p m / p 2 m m \text { and } p 31 m
\end{aligned}
$$

packing densities of a dodecagon

- $\rho\left(\mathcal{K}_{p 2 / p 2 g g / p g / p 3 / p 1_{\text {max }}}\right)=\frac{3+2 \sqrt{3}}{6} \rho\left(\mathcal{K}_{p 2 m g / c m / p 4_{\text {max }}}\right)=$
$=\frac{2 \sqrt{3}}{3} \rho\left(\mathcal{K}_{p 4 m g / c 2 m m / p m / p 2 m m_{\text {max }}}\right)=\frac{2+\sqrt{3}}{3} \rho\left(\mathcal{K}_{p 31 m_{\text {max }}}\right)$

p1

p4gm

cm

p31m

Relationships between

p2/p2gg/pg/p3/p1, p2mg/cm/p4, $p 4 m g / c 2 \mathrm{~mm} / \mathrm{pm} / \mathrm{p} 2 \mathrm{~mm}$ and p 31 m

 packing densities of a dodecagon- $\rho\left(\mathcal{K}_{p 2 / p 2 g g / p g / p 3 / p 1_{\text {max }}}\right)=\frac{3+2 \sqrt{3}}{6} \rho\left(\mathcal{K}_{p 2 m g / c m / p 4_{\text {max }}}\right)=$ $=\frac{2 \sqrt{3}}{3} \rho\left(\mathcal{K}_{p 4 m g / c 2 m m / p m / p 2 m m_{\max }}\right)=\frac{2+\sqrt{3}}{3} \rho\left(\mathcal{K}_{p 31 m_{\max }}\right)$
- Numerically, these relationships approximately hold for all n-gons with 12 -fold rotational symmetry.

p1

p4gm

cm

p31m

Relationships between

p2/p2gg/pg/p3/p1, p2mg/cm/p4, $p 4 \mathrm{mg} / \mathrm{c} 2 \mathrm{~mm} / \mathrm{pm} / \mathrm{p} 2 \mathrm{~mm}$ and p 31 m packing densities of a 24 -gon

- $\rho\left(\mathcal{K}_{p 2 / p 2 g g / p g / p 3 / p 1_{\text {max }}}\right)=\frac{3+2 \sqrt{3}}{6} \rho\left(\mathcal{K}_{p 2 m g / c m / p 4_{\text {max }}}\right)=$
$=\frac{2 \sqrt{3}}{3} \rho\left(\mathcal{K}_{p 4 m g / c 2 m m / p m / p 2 m m_{\text {max }}}\right)=\frac{7}{6} \rho\left(\mathcal{K}_{p 6_{\text {max }}}\right)=$
$=\frac{2+\sqrt{3}}{3} \rho\left(\mathcal{K}_{p 31 m_{\text {max }}}\right)=\frac{3}{2} \rho\left(\mathcal{K}_{p 3 m 1_{\text {max }}}\right)=\frac{3 \sqrt{3}+2 \sqrt{6}}{6} \rho\left(\mathcal{K}_{p 4 m m_{\text {max }}}\right)=$ $=\frac{2+\sqrt{3}}{2} \rho\left(K_{p 6 m_{\max }}\right)$

p1

p31m
p4

p3m1

p4gm
p4mm

p6

p6mm

$p 2 / p 2 g g / p g / p 3 / p 1$ packing of a disc

- $\rho\left(\mathcal{K}_{p 2 / p 2 g g / p g / p 3 / p 1_{\max }}\right)=\frac{\sqrt{3}}{6} \pi=0.9068996 \ldots$
- Optimal lattice packing
- Lagrange, J. L. (1773). Recherches d'arithmétique. Nouveaux Mémoires de l'Académie de Berlin.
- Gauss, C. F. (1840). Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber. J. reine angew. Math, 20(312-320), 3.

(Left) $p 1$ packing of a disc, (middle) the corresponding 3^{6} regular tiling, and (right) its dual tiling ${ }^{1}$.

[^4]
$p 2 \mathrm{mg} / \mathrm{cm} / \mathrm{p} 4$ packing of a disc

- $\rho\left(\mathcal{K}_{p 2 m g / c m / p 4_{\text {max }}}\right)=(2-\sqrt{3}) \pi=0.8417872 \ldots$

(Top) $p 2 m g$ packing of a disc, (bottom left) the corresponding $3^{3} .4^{2}$ semiregular tiling, and (bottom right) its dual tiling ${ }^{1}$.

[^5]
$p 2 m g / c m / p 4$ packing of a disc

- $\rho\left(\mathcal{K}_{p 2 m g / c m / p 4_{\max }}\right)=(2-\sqrt{3}) \pi=0.8417872 \ldots$

(Left) $p 4$ packing of a disc, (middle) the corresponding 3^{2}.4.3.4 semiregular tiling, and (right) its dual tiling ${ }^{1}$.

[^6]
$p 4 m g / c 2 m m / p m / p 2 m m$ packing of a disc

- $\rho\left(\mathcal{K}_{p 4 m g / c 2 m m / p m / p 2 m m_{\text {max }}}\right)=\frac{\pi}{4}=0.7853981 \ldots$

(Left) $p 4 m g$ packing of a disc, (middle) the corresponding 4^{4} semiregular tiling, and (right) its dual tiling ${ }^{1}$ (self-dual).

[^7]
p6 packing of a disc

- $\rho\left(\mathcal{K}_{p 6_{\text {max }}}\right)=\frac{\sqrt{3}}{7} \pi=0.7773425 \ldots$

(Left) $p 6$ packing of a disc, (middle) the corresponding $3^{4} .6$ semiregular tiling, and (right) its dual tiling ${ }^{1}$ (self-dual).

[^8]
p31m packing of a disc

- $\rho\left(\mathcal{K}_{p 31 m_{\text {max }}}\right)=\frac{2 \sqrt{3}-3}{2} \pi=0.7290091 \ldots$

(Left) $p 31 \mathrm{~m}$ packing of a disc, (middle) the corresponding 3.4.6.4 semiregular tiling, and (right) its dual tiling ${ }^{1}$.

[^9]
p3m1 packing of a disc

- $\rho\left(\mathcal{K}_{\rho 3 m 1_{\text {max }}}\right)=\frac{\sqrt{3}}{9} \pi=0.6045997 \ldots$

(Left) $p 31 \mathrm{~m}$ packing of a disc, (middle) the corresponding 6^{3} regular tiling, and (right) its dual tiling ${ }^{1}$.

[^10]
p4mm packing of a disc

- $\rho\left(\mathcal{K}_{p 4 m m_{\max }}\right)=(3-2 \sqrt{2}) \pi=0.5390120 \ldots$

(Left) $p 4 \mathrm{~mm}$ packing of a disc, (middle) the corresponding 4.8^{2} semiregular tiling, and (right) its dual tiling ${ }^{1}$.

[^11]
p6mm packing of a disc

- $\rho\left(\mathcal{K}_{p 6 m m_{\max }}\right)=\frac{2 \sqrt{3}-3}{3} \pi=0.4860060 \ldots$

(Left) $p 6 \mathrm{~mm}$ packing of a disc, (middle) the corresponding 4.6.12 semiregular tiling, and (right) its dual tiling ${ }^{1}$.

[^12]Table 2-2. DENSITIES OF PLANE ARRANGEMENTS OF CIRCLES

PACKING (TESSELLATION)	DENSITY
$\{3,6\}$	$\pi / \sqrt{12}=0.9069$
$\{4,4\}$	$\pi / 4=0.7854$
$\{6,3\}$	$\pi / \sqrt{27}=0.6046$
$3^{3} \cdot 4^{2}$	$\pi /(\sqrt{3}+2)=0.8418$
$3^{2} .4 .3 .4$	$\pi /(\sqrt{3}+2)=0.8418$
3.6 .3 .6	$3 \pi /(8 \sqrt{3})=0.6802$
$3^{4} \cdot 6$	$3 \pi /(7 \sqrt{3})=0.7773$
3.12^{2}	$3 \pi /(12+7 \sqrt{3})=0.3906$
4.8^{2}	$\pi /(3+\sqrt{8})=0.5390$
3.4 .6 .4	$3 \pi /(4 \sqrt{3}+6)=0.7290$
4.6 .12	$\pi /(3+2 \sqrt{3})=0.4860$

Williams, R. (1979). Circle packings, plane tessellations, and networks. The Geometrical Foundation of Natural Structure: A Source Book of Design, 34-47.

THANK YOU

[^0]: ${ }^{1}$ Rogers, C. A. (1951). The closest packing of convex two-dimensional domains.

[^1]: ${ }^{1}$ Rogers, C. A. (1951). The closest packing of convex two-dimensional domains. Acta Mathematica, 86(1), 309-321.

[^2]: ${ }^{1}$ Rogers, C. A. (1951). The closest packing of convex two-dimensional domains.
 Acta Mathematica, 86(1), 309-321.

[^3]: ${ }^{1}$ Further information on ETRPA: M. Torda, J. Y. Goulermas, R. PÚček and V. Kurlin, Entropic trust region for densest crystallographic symmetry group packings, arXiv:2202.11959. To appear in SIAM Journal on Scientific Computing.

[^4]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

[^5]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

[^6]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

[^7]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

[^8]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

[^9]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings

[^10]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

[^11]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

[^12]: ${ }^{1}$ List of Euclidean uniform tilings. (2023, April 2). In Wikipedia. https://en.wikipedia.org/wiki/List_of_Euclidean_uniform_tilings.

