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Abstract
Stochastic relaxation is a well-known approach used to solve problems in machine learning and artificial intelligence, particularly

when dealing with complicated optimization landscapes. Here, our focus is on identifying maximally dense packings of compact
sets into n-dimensional Euclidean space, specifically packings restricted to the Crystallographic Symmetry Groups (CSGs). Utilizing
stochastic relaxation, we have developed a non-Euclidean trust region algorithm called the Entropic Trust Region Packing Algorithm
(ETRPA). The ETRPA is a variant of the natural gradient learning approach, equipped with adaptive selection quantile fitness
rewriting. Since CSGs induce a toroidal topology on the configuration space, the ETRPA’s search is performed on a statistical
manifold of Extended Multivariate von Mises (EMvM) probability distributions, a parametric family of probability measures defined
on an n-dimensional torus. To gain insight into the geometric properties of ETRPA, we establish a connection with the generalized
proximal method. This connection allows us to examine the algorithm’s behavior using local dual geodesic flows that maximize the
stochastic dependence among elements of the EMvM distributed random vector. Consequently, ETRPA’s theoretical foundation in
evolutionary dynamics, statistical physics, and recurrent neural computing can be interpreted in terms of group equivariant geometric
learning, providing a deeper understanding of the algorithm and its application in material science.

Problem statement
Given K a compact subset of Rn and G a Crystallographic Symmetry Group (CSG) - a discrete group of isometries
of Rn containing a lattice subgroup - determine the configuration KG consisting only of non-overlapping copies of K
generated as an orbit under the action of G on Rn, such that the ratio of the filled to the whole space is maximized
over the whole equivalence class G of G. Formally,

Kmax = argmax
KG:G∈G

ρ (KG) , G = {H|H ∼= G}. (1)

where 0 ≤ ρ(·) ≤ 1 is the packing density. Our work is motivated by the problem of Crystal Structure Prediction,
in which given some molecular shape, the goal is to predict a synthesizable periodic structure.

Figure 1: 2-dimensional CSG packings, wherein G is the p2 plane group, and K is a geometric representation of pentacene by the convex
hull of the atomic positions of the molecule, with an offset given by hydrogen’s van der Waals radius of 1.09Å. (Left) Packing configuration
with a density of 0.4990761. (Right) Packing configuration with a density of 0.9533821. The blue lines denote the crystal lattice, while
the colors denote symmetry operations represented by cosets gL, where g ∈ G is an element of the p2 plane, and L is the lattice subgroup
of G. The dots symbolize the atomic positions of hydrogen (blue) and carbon (black).

Etropic Trust Region Packing Algorithm (ETRPA)
Stochastic relaxation and the entropic trust region
We transform Eq. (1) via stochastic relaxation [3] to the problem of θ̃ = argmaxθ∈Θ J(θ), with J(θ) := E[F|θ] =∫

X F(x)dP (θ) being the expected fitness F of the packing density ρ under some probability measure dP (θ) from
family of probability measures S = {dP (θ) | θ ∈ Θ ⊆ Rn} defined on some configuration space X and solve it
using first order trust region method where the trust region radius is given by the Kullback-Leibler divergence from
Pθ to Pθ+δθ, defined by DKL (Pθ || Pθ+δθ) =

∫
X ln

(
dP (θ)

dP (θ+δθ)

)
dP (θ). The update equation reads

θt+1 = θt + ∆t ∇̃J(θt)
∥ ∇̃J(θt) ∥Iθt

, (2)

where ∇̃J(θ) = I−1
θ ∇θJ(θ) is the natural gradient [1], ∥ · ∥Iθ

is the norm associated with the inner product
induced by the Fisher metric tensor Iθ with elements Iθij =

∫
X
∂ ln(p(θ))

∂θi
∂ ln(p(θ))

∂θj
dP (θ), p(θ) = dP (θ)

dν is the
Radon-Nikodym derivative with respect to a reference measure ν on X and ∇θ is the Euclidean gradient in θ-
coordinates.

Adaptive selection quantile
We implement a truncation selection transformation for q ≥ 1 of the fitness function F

q 1Fθ̃

1−1
q

(x) =

q if F(x) ≥ Fθ̃
1−1

q

,

0 otherwise,

where Fθ̃
1−1

q

is the Pθ̃’s (q− 1)th q-quantile of the fitness F and 1·(·) is the indicator function. Assuming Pθ̃ is from
the exponential family statistical model then, for a fixed q∗

∇θJ(θ) |θ=θ̃ = µF1− 1
q∗

− µ, (3)

where µF1− 1
q∗

=
∞∫

Fθ̃

1− 1
q∗

F−1(y) exp
{

θ̃⊺t
(
F−1(y)

)
− ψ(θ̃) + ln (q∗)

}
dP0 ◦ F−1(y) is the expectation parametrisa-

tion of the truncated exponential probability distribution derived from Pθ̃’s (q∗ − 1)th q-quantile of the fitness F
and µ =

∫
x exp{θ̃⊺t (x) − ψ(θ̃)}dP0 is the expectation parametrisation of Pθ̃.

Since varying q influences the magnitude of Eq. (3), as visualized in Fig. (2), we introduce an adaptive quantile
into the optimization schedule by

qt+1 = qt exp{β cos(αt)},
where αt is the angle between three consecutive updates of Eq. 2 considered as points on the statistical manifold S.
Parameter qt can be regarded as an equivalent of the temperature parameter in the simulated annealing schedule.
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Figure 2: Influence of the q-quantile on the fitness gradient (Eq. (3)) in one run of the ETRPA on the problem of densest p2-packing
of a regular octagon. (Left) Relationship between selection quantile q and the scaled expected fitness gradient ∥ ∇θJ(θt, q) ∥scaled =

∥µtF1−1
q

−µt∥1

∥µtF1− 1
qmax

−µt∥1
, where qmax = argmaxq ∥ µt

F1−1
q

− µt ∥1, q = 6, . . . , 600. (Right) Scaled expected fitness averaged through all iterations

<∥ ∇θJ(θ, q) ∥scaled> where markers denote changes in the value.

Extended multivariate von Mises distribution
The lattice subgroup L of a CSG induces quotient space Rn/L. Thus, we restrict ETRPA’s search to a statistical
model consisting of probability distributions defined on an n-torus. This is done by extending the multivariate von
Mises model [4] to the family of distributions with the probability density function

f (θ|µ,κ,D) = 1
Z(µ,κ,D)

exp
{

κ⊺c(θ − µ) + 1
2

[
c(θ − µ)
s(θ − µ)

]⊺
D

[
c(θ − µ)
s(θ − µ)

]}
(4)

c(θ − µ) = [cos(θ1 − µ1), . . . , cos(θn − µn)]⊺

s(θ − µ) = [sin(θ1 − µ1), . . . , sin(θn − µn)]⊺

0 ≤ θi ≤ 2π 0 ≤ µi ≤ 2π 0 ≤ κi,

D =
[

Dcc Dcs

Dcs⊺ Dss

]

where the diagonal elements of Dcc, Dss and Dcs are zero and D is a 2n× 2n real-valued symmetric matrix that
controls cosine-cosine, sine-sine and cosine-sine interactions. Additionally, we remove non-identifiability of Eq. (4)
by the restriction κi > 0 and introduce the exponential family re-parametrisation of the extended multivariate von
Mises distribution Eq.(4) to

f (θ|η,E) = exp
{[

c(θ)
s(θ)

]⊺
η + vec

([
c(θ)
s(θ)

] [
c(θ)
s(θ)

]⊺)⊺

vec (E) − ψ (η,E)
}

where vec(·) denotes vectorization.
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Figure 3: 2-dimensional projections along coordinate
axes and histograms of univariate marginals correspond-
ing to the respective optimization variables of 600 realiza-
tions of the exponential re-parametrisation of the extended
multivariate von Mises distribution defined on an 6-torus.
(Left) Initial distribution and (Right) output distribu-
tion of a single run of the ETRPA on the problem of densest
p2-packing of a regular octagon with following optimiza-
tion variables: octagon centroid fractional coordinates c1
and c2 in the p2 fundamental region, angle of rotation of
the octagon ωp, lengths of the lattice generators b1 and b2,
and angle between lattice generators ωc.

Geometry of ETRPA
Recasting ETRPA as a solution of a maximin problem, which has an interpretation in terms of maximizing multi-
information [2] and can be observed visually in Fig. 3, allows us to view ETRPA (information) geometrically as
follows. The aforementioned maximin problem reads

max
P

θq
∗∈Sq∗

min
Pθ1∈S1

DKL(Pθq∗ || Pθ1); Sq
∗
, S1 ⊂ S (5)

and is induced by dual gradient flows between two codimension 1 submanifolds of the ambient statistical manifold

S =
⋃

q∈[1;∞)
Sq, Sq = {dP q(θ)| θ ∈ Θq ⊂ Rn} ,

where dP q(θ) =

{
exp

{
θ⊺t

(
F−1(y)

)
− ψ (θ) + ln(q)

}
dP0 ◦ F−1(y) y ≥ Fθ

1−1
q

0 otherwise
.

Indeed, the Euclidean fitness gradient Eq. (3) for a fixed q∗ determines proximal map maximization [5]

θt+1 = argmax
θ∈Θ

{
θ⊺∇θJ(θt) − 1

ϵ
DKL (Pθt || Pθ)

}
,

and hence natural gradient updates in dual coordinate systems

θt+1 = θt + ϵtI−1
θt ∇θJ(θt), µt+1 = µt + ϵtI−1

µt ∇µJ(µt), (6)

which when lifted to S via θ1 = [θ, 1] and µq
∗ =

[
µF1− 1

q∗
,− 1

q∗

]
, where µF1− 1

q∗
= q∗µ−(q∗−1)µF 1

q∗
, for the natural

gradients of Eq. (6) in θ and µ coordinates respectively, give the flows. Moreover, for ϵt = ∆t√
∇θJ(θt)⊺(Iθt)

−1∇θJ(θt)
the θ-coordinate natural gradient update part of Eq. (6) coincides with trust region update Eq. (2). In addition,
submanifolds Sq induce a dually flat structure on S and following the information projection theorems, solving
Eq. (5) is equivalent to solving

max
P

θq
∗∈Sq∗

DKL(Pθq∗ || P
θ̂1
s
) (7)

where P
θ̂1
s

∈ S1 is a model without any interaction whatsoever corresponding to the maximum entropy estimate
of Pθq∗ ∈ Sq

∗. Consequently, DKL(· || P
θ̂1
s
) in Eq.(7) is considered as a special case of multi-information [6], a

measure of stochastic dependence in complex systems.
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