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“There is nothing more in physical theories than symmetry groups except the 
mathematical construction which allows precisely to show that there is nothing more”§

§ F. Barbaresco, (2020). Jean-Marie Souriau’s symplectic model of statistical physics: seminal papers on Lie groups thermodynamics-Quod Erat demonstrandum. In Workshop on Joint Structures and Common Foundations of 
Statistical Physics, Information Geometry and Inference for Learning (pp. 12-50). Cham: Springer International Publishing.
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Crystal Structure Prediction

• Physical problem: Predict the arrangement of molecules within a crystalline solid based only on the chemical composition of the target molecule 
from first-principles (i.e. thermodynamics, quantum mechanics)

§ Hunnisett, L. M., Nyman, J., Francia, N., Abraham, N. S., Adjiman, C. S., Aitipamula, S., ... & Zeng, Q. (2024). The seventh blind test of crystal structure prediction: structure generation methods. Structural Science, 80(6).

Group 20 generated correct structures for all target compounds§
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High-Accuracy DFT Geometry Refinement 
and Final Structure Assessment

Geometric Representation of a Molecule

Crystal Structure Prediction

• Physical problem: Predict the arrangement of molecules within a crystalline solid based only on the chemical composition of the target molecule 
from first-principles (i.e. thermodynamics, quantum mechanics)

L. Lewis, H. Y. Huang, V. T. Tran, S. Lehner, R. Kueng, and  J. Preskill. (2024). Improved machine learning algorithm for predicting ground state properties. Nature Communications, 15(1), 895.

N. Galanakis and M. E. Tuckerman (2024). Rapid prediction of molecular crystal structures using simple topological and physical descriptors. Nature Communications, 15(1), 9757.

Force Field Based Structure Generation and filtering
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Ground state configuration of a mono-atomic Lennard-Jones system at zero temperature¹.

The Crystallization Conjecture

• Statement. In suitable boundary conditions, the energy ground states of interacting particles form periodic configurations in 
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1 F. Theil, A Proof of Crystallization in Two Dimensions, Communications in Mathematical Physics, 262 (2006), pp. 209–236.
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The Crystallization Conjecture

Lagrange, J. L. (1773). Recherches d’arithmétique. Nouveaux Mémoires de l’Académie de Berlin.

Gauss, C. F. (1840). Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber. J. reine angew. Math, 20(312-320), 3.
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6A system of 500 model molecules in a square box - 6 atoms each.
Each frame is an output of a Sequential Quadratic Programming run • Random initial configuration 

• Boundaries are reduced after each iteration

Crystallization of Molecular Crystals

{I, J}
I ∩ J = 0
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(i,j)

uik

4. The potentials  are universal, i.e., depend only on the species of the atoms, no matter what 
molecule they are part of and what their valence states may be. 

u(i,j)

5. For the , we may adopt various analytical expressions of the type of 6-exp or 6:n potentials with 
arbitrary parameters which must be determined by experiment.

u(i,j)

§ A. I. Kitaigorodsky, Molecular Crystals and Molecules, Academic Press New York, 1973.
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Crystallographic Symmetry Groups §

§  W. Miller, Symmetry Groups and Their Applications, Academic Press, 1973.

Definition. Let  be the -dimensional Euclidean group and  the translational symmetry group. An n-dimensional 
Crystallographic Symmetry Group  is a discrete subgroup of isometries of  such that  is a lattice group. 

En n Tn ⊆ En
G En Ln = G ∩ Tn

Wallpaper Groups ( )n = 2 Space Groups ( )n = 3
 (Hermann-Mauguin Notation)p3  (Hermann-Mauguin Notation)P21

Point Group K ≅ G/Ln



Case of The Pairwise Potential  ( ).ϕ(i,j) = u(i,j) ϕelectrostatic
(i,j) = 0

1. M. Torda,  J. Y. Goulermas, V. Kurlin and G. M. Day. (2022). Densest plane group packings of regular polygons. Physical Review E, 106(5), 054603.

• Experimental analysis of symmetries of the densest packings of 34 regular polygons¹
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Case of The Pairwise Potential  ( ).ϕ(i,j) = u(i,j) ϕelectrostatic
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• Observation. Symmetries of the densest packing of a disc coincide with the symmetries of the 
densest packings of regular polygons with six-fold rotational symmetries.

1. M. Torda,  J. Y. Goulermas, V. Kurlin and G. M. Day. (2022). Densest plane group packings of regular polygons. Physical Review E, 106(5), 054603.

2. L. Fejes. (1942). Über die dichteste Kugellagerung. Mathematische Zeitschrift, 48(1), 676-684.
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Case of The Pairwise Potential  ( ).ϕ(i,j) = u(i,j) ϕelectrostatic
(i,j) = 0

1. Triangular tiling. (2024, November 25). In *Wikipedia, The Free Encyclopedia*. https://en.wikipedia.org/wiki/Triangular_tiling
2. Hexagonal tiling. (2024, November 25). In *Wikipedia, The Free Encyclopedia*. https://en.wikipedia.org/wiki/Hexagonal_tiling

Triangular tiling Hexagonal tilingDensest Disc Packing

ρ (𝒦p2/p2gg/pg/p3/p1max) =
3

6
π = 0.9068996… Regular tessellation Dual tessellation



Case of The Pairwise Potential  ( ).ϕ(i,j) = u(i,j) ϕelectrostatic
(i,j) = 0

1. Snub trihexagonal tiling. (2024, November 25). In *Wikipedia, The Free Encyclopedia*. https://en.wikipedia.org/wiki/Snub_trihexagonal_tiling#Floret_pentagonal_tiling

Snub trihexagonal tiling Floret pentagonal tilingDensest  disc packingp6

Regular tessellation Dual tessellationρ (𝒦p6max) =
3

7
π = 0.7773425…
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Case of The Pairwise Potential  ( ).ϕ(i,j) = u(i,j) ϕelectrostatic
(i,j) = 0

Conjecture. For any regular molecule with six-fold rotational symmetry and Lennard-Jones-like inter atomic potential, the ground state configuration 

is given by the densest packing of the corresponding regular polygon.

Dodecagon

Disc²

p1 p2 p3



Case of The Pairwise Potential  ( ).ϕ(i,j) = ϕelectrostatic
(i,j) u(i,j) = 0

1. M. O’Shaughnessy, J. Glover, R. Hafizi, M. Barhi, R. Clowes, S. Y. Chong, S. P. Argent, G. M. Day and A. I. Cooper. (2024). Porous isoreticular non-metal organic frameworks. Nature, 1-7.

Non-Metal Organic Frameworks¹
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Case of The Pairwise Potential  ( ).ϕ(i,j) = ϕelectrostatic
(i,j) u(i,j) = 0

1. Rhombitrihexagonal tiling. (2024, November 25). In *Wikipedia, The Free Encyclopedia*. https://en.wikipedia.org/wiki/Rhombitrihexagonal_tiling

Rhombitrihexagonal tiling Deltoidal trihexagonal tilingDensest  disc packingp31m

Regular tessellation Dual tessellationρ (𝒦p31mmax) =
2 3 − 3

2
π = 0.7290091…

2. M. Torda,  J. Y. Goulermas, V. Kurlin and G. M. Day. (2022). Densest plane group packings of regular polygons. Physical Review E, 106(5), 054603.
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2. M. Torda,  J. Y. Goulermas, V. Kurlin and G. M. Day. (2022). Densest plane group packings of regular polygons. Physical Review E, 106(5), 054603.
3. H. S. M. Coxeter. (1973). Regular polytopes. Dover Publication, Inc.
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Crystallographic restriction theorem³. If a discrete group of rotations 
in the plane has more than one centre of rotation, then the only 
rotations that can occur are 2-fold, 3-fold, 4-fold, and 6-fold. 
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1.  L. Bétermin, (2021). Effect of periodic arrays of defects on lattice energy minimizers. In Annales Henri Poincaré (Vol. 22, pp. 2995-3023). Springer International Publishing.

Under certain assumptions, if the minimal energy is achieved by a lattice 
structure, some of its sub-lattices also remain minimizers of this energy¹.



Lattice packing of spheres with density of 
π
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Face Centered Cubic Packing of Spheres 

1.  L. Bétermin, (2021). Effect of periodic arrays of defects on lattice energy minimizers. In Annales Henri Poincaré (Vol. 22, pp. 2995-3023). Springer International Publishing.

X2 + Y2 + Z2 + XYThe Face Centred Cubic lattice with quadratic form².

2.  K. L. Fields. (1979). Stable, fragile and absolutely symmetric quadratic forms. Mathematika, 26(1), 76-79.

Under certain assumptions, if the minimal energy is achieved by a lattice 
structure, some of its sub-lattices also remain minimizers of this energy¹.
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