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“All models are wrong, but some are useful.“ - George E. P. Box

Jacopo Bertolotti, CC0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Orthogonal_Matching_Pursuit.gif

Example. Compressed Sensing / Sparse Sampling

Trigonometric regression

Model 1. y = 0.4514 + 0.6077 sin(x) − 1.2837 cos(x) − 1.4938 sin(2x) + 0.5741 cos(2x)
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1. Why think about machine learning geometrically?

More complicated models don’t necessarily mean better models.
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distribution of the packing generation at 
the  iteration.
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Belief Propagation / Sum–Product Message Passing
Each node exchanges its belief about the expected value through branches.

Maximization of Multi-Information/Total Correlation
• A measure of stochastic dependence in complex systems.
• Generalization of the Infomax Principle:
• A rule for training Artificial Neural Networks.
• The algorithm learns the optimization landscape given by the molecular Close-Packing.
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Visualization of the MCYPDE packing 
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P2₁ (Left) Maximum packing density; 
(middle) average packing density of N-
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Reference Comparison Molecules in Common RMS ρ

Ground state Rank 1 30 out of 30 0.247 0.7584

Ground state Rank 2 8 out of 30 1.790 0.7514

Ground state Rank 3 10 out of 30 0.756 0.7510

Visualization of the packing match to the CSP lowest 
energy structure (Left) A single unit cell displayed in a 
space-filling representation, where colors indicate 
symmetry operations modulo lattice translations. (Middle 
and right) Overlay in a wireframe representation: the global 
energy minimum (blue) and the matching packing (red). 
(Middle) Asymmetric unit of the configuration; (right) a 15-
molecule cluster.
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No free lunch theorem

"state[s] that any two optimization algorithms are equivalent when their performance is averaged 
across all possible problems”.

Wolpert, D.H.; Macready, W.G. (2005). "Coevolutionary Free Lunches". IEEE Transactions on Evolutionary Computation. 9 (6): 721–735.
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