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Days 1-10

Teach yourself variables, con-
stants, arrays, strings, expres-
sions, statements, functions,...

Days 11 - 21

Teach yourself program flow,
pointers, references, classes,
objects, inheritance, polymor-
phism, ....

Days 22 - 697

Do a lot of recreational program-
ming. Have fun hacking but re-
member to learn from your mis-

Days 698 - 3648

Interact with other programmers.
Work on programming projects
together. Learn from them.

29

Days 3649 - 7781

Teach yourself advanced theoret-
ical physics and formulate a con-
sistent theory of quantum grav-

ity.

Days 7782 - 14611
Teach yourself biochemistry,
molecular biology, genetics,...

Day 14611
Use knowledge of biology to
make an age-reversing potion.

Day 14611

Use knowledge of physics to
build flux capacitor and go back
in time to day 21.

&7 ':'. L L X%
New

FLUX
CoMrxessron

Day 21
Replace younger self.

R 93

As far as | know, this
Is the easiest way to

"Teach Yourself C++ in 21 Days".



Outline

1. Why think about machine learning geometrically?



Outline

1. Why think about machine learning geometrically?

2. Case Study: Molecular Crystal Structure Prediction.



Outline

1. Why think about machine learning geometrically?

2. Case Study: Molecular Crystal Structure Prediction.

3. Closing remarks.



1. Why think about machine learning geometrically?

Geometry of the Linear Regression Model

N measurements. (y;, xil, ...,xl.k) @i=1,...,N)



1. Why think about machine learning geometrically?

Geometry of the Linear Regression Model

N measurements. (y;, xil, ...,xl.k) @i=1,...,N)

Linear Algebra

Y1 1 oz -+ b o €1
Y2 1 9 U ) 91 £2
) =1. . . ) A B ol B
YN 1 oy - 2% ) \bk EN

154

Yy F 0

=
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1. Why think about machine learning geometrically?

Bad news. Usually .Z is not a plane (linear) but a surface & or
some other space.

Learning means finding values of 6 from measurements

Least Squares estimate 0 of O is an orthogonal projection of y onto the plane of

expected values ./ (F).
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1. Why think about machine learning geometrically?

Bad news. Usually .Z is not a plane (linear) but a surface & or
some other space.

However, the underlying idea is the same.

Least Squares estimate 0 of O is an orthogonal projection of y onto the plane of

expected values ./ (F).

(1)

| ~ 1
Example. Y= 3 O + € 90=Ni§yi
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Trigonometric regression

Model 1. y = 0.4514 + 0.6077 sin(x) — 1.2837 cos(x) — 1.4938 sin(2x) + 0.5741 cos(2x)

Model 2. y = 0.4521 4 0.6065 sin(x) — 1.2916 cos(x) — 1.4803 sin(2x) + 0.5728 cos(2x) + 0.0155 sin(3x) 4+ 0.0584 cos(3x)
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Physical problem. Predict the arrangement of molecules within a crystalline solid based only on the chemical composition of the target molecule
from first-principles (i.e. thermodynamics, quantum mechanics)

Geometric Representation of a Molecule Geometric-Inductive-Biased Structure Generation High-Accuracy DFT Geometry Refinement
and Final Structure Assessment
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As usual, things are more complicated.

Molecule as a collection of Van der Waals spheres
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As usual, things are more complicated. Close - Packing Principle

More symmetry than a simple lattice translation
Molecule as a collection of Van der Waals spheres
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Visualization of the MCYPDE packing
maximization run for the space group
P2, (Left) Maximum packing density;
(middle) average packing density of N-
best packings at i — th iteration; (right)
distribution of the packing generation at
the iteration.

Graphical model / Markov random field

Belief Propagation / Sum-Product Message Passing
Each node exchanges its belief about the expected value through branches.

Maximization of Multi-Information/Total Correlation
* A measure of stochastic dependence in complex systems.
* Generalization of the Infomax Principle: maxXx M/(/; O)

e A rule for training Artificial Neural Networks. 1feF|O0=f(l)}
* The algorithm learns the optimization landscape given by the molecular Close-Packing.
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As usual, things are more complicated. | | | Close - Packing Principle
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3. Closing remarks.

Simpson’s paradox
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Correlation does not imply causation.



3. Closing remarks.

No free lunch theorem

"state[s] that any two optimization algorithms are equivalent when their performance is averaged
across all possible problems”.

Wolpert, D.H.; Macready, W.G. (2005). "Coevolutionary Free Lunches". IEEE Transactions on Evolutionary Computation. 9 (6): 721-735.



Shun-ichi Amari

Information
Geometry
and Its
Applications

@ Springer

3. Closing remarks.



}

Wie| UNIVERS | THue The Leverhulme Research Centre LEVERHUL
w LIVERPOOL for Functional Materials D%sign TRUST

. =

THANK YOU

milotorda.net
( ( )( : Imperial College | wi.c et seals UNIVERSITY OF
& Hartree Centre P 9 o=
The CambggtgaeCCerr)]/frtsIlographic dlamond WP science & Technology Fac ilities Counc il London - Abmdzivfrﬁ » SOthhampton
Science and Technology

The authors thank the Leverhulme Trust for funding this research via the Leverhulme Research Centre for Functional Materials Design



