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• Model errors, model discrepancies, or model inadequacies

• Invented and developed the idea of robustness

• Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.

• The famous quote of Georg E.P. Box

• Sources of Systematic Uncertainties:
• Simplifying model assumptions

• Missing physics

• Basic lack of knowledge

• Uncertainty Propagation
• Propagate systematic uncertainties through models to construct interval estimates



Example: Computing the Packing Coefficient

• Packing coefficient for periodic configurations: ρ =
vol(O)
vol(U)



• Packing coefficient for periodic configurations: ρ =
vol(O)
vol(U)

• vol(U) = det(U)

Example: Computing the Packing Coefficient



• Packing coefficient for periodic configurations: ρ =
vol(O)
vol(U)

• vol(U) = det(U)

• vol(O) = ∫O
dV

•  - subset of occupied by the van der Waals spheresO

•  - natural volume form on dV R3

Example: Computing the Packing Coefficient



• Packing coefficient for periodic configurations: ρ =
vol(O)
vol(U)

• vol(U) = det(U)

• vol(O) = ∫O
dV

•  - subset of occupied by the van der Waals spheresO

•  - natural volume form on dV R3

S1 + S2 + S3 − S1 ∩ S2 − S1 ∩ S3 − S2 ∩ S3 + S1 ∩ S2 ∩ S3

Example: Computing the Packing Coefficient
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• vol(O) = ∫ 1OdU

• Change of coordinates to an integral over the unit cube C

vol(O) = ∫ 1U−1Odet(U)dC

•  - indicator function over 1O U

• ρ =
vol(O)
vol(U)

ρ = ∫ 1U−1O(U)dC

C ∼ X•Uniform random variable on a unit cube

ρ = E [1U−1O] = P (X ∈ U−1O)

̂ρ =
#{Xi ∈ U−1O}

N

X1, …XN ∼ C
•Draw realisations o a random vector

•Estimate the packing coefficient
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• N=100000 #{Xi ∈ U−1O} = 76812

• CCDC Mercury: 0.762159

• Which point estimate to trust?

• ̂ρ = 0.76812
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Xi binomially distributed random variable Expected value: Nρ
Variance: Nρ (1 − ρ)

• Central limit theorem: Z =
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N
z]• Interval estimate:  -  quantile of the standard normal distributionz 1 − α

• A way to express confidence in the packing coefficient estimate ̂ρ
• The tighter the interval, the higher the confidence in the estimate.

•Even better, sample until the size of this interval to be less than some constant  with probability  c p

P | ̂ρ − ρ | < 2z
̂ρ (1 − ̂ρ)

N
= p

• CCDC Mercury: 0.762159
• N=100,000: 0.76812
•  N ~ 9,000,000̂ρ ≈ 0.767827• | ̂ρ − ρ | < 0.001

• p = 0.999
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Optimisation Under Uncertainty

• How to express confidence in the best solution found?

• Run multiple simulations and compute an interval estimate.

• Hodges-Lehmann estimator of the pseudomedian of 20 runs

m̂ = 0.8970032

• 95% confidence interval based on Wilcoxon's signed rank test

(0.8959246,0.8980686)

• Stochastic optimisation problems
• Uses the tools of probability theory and mathematical statistics.

• Situations where the optimum is unknown.

Highest maximal packing solution Lowest maximal packing solution

ρ = 0.89984 ρ = 0.89336

• Example: Packing regular octagons in the plane group p2.
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Optimisation Under Uncertainty

• Simulated annealing example

lim
k→∞

P(Xk ∈ Smin) = 1
• Converge in probability to the set of globally optimal solutions

• We don’t know when it happens. It might take years.

• Estimate optimality gaps

max[ρ] − E[ρ]

• Stopping Criterion: stop when the optimality gap falls below 0.1%

1 100

• The universal phrase in global optimisation literature:
“Repeat until convergence.”
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yi = ξ(xi) + ϵi• Model of i-th observation:

ξ(xi) - true value of the physical system at xi

ξ(xi) = η(xi, θ) + δ(xi)

η(xi, θ) - value of the simulator at xi
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• When extrapolating to contexts outside those for which we have observations of the physical 
system, it is essential to impose strict prior information on the permissible function space used to 
construct  .δ(xi)
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