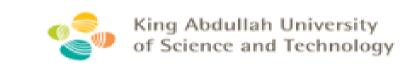
The Leverhulme Research Centre for Functional Materials Design

Aspects of Uncertainty Quantification in Materials Discovery

Miloslav Torda

Knowledge bite



Are You Confident?



Thought for 39s >

Here's a compact, modern MATLAB script that builds an icosahedron from first principles (golden-ratio coordinates), then renders it nicely with lighting, vertex markers, and a wire overlay. It uses patch with Faces/Vertices as documented by MathWorks.

```
matlab

% ICOSAHEDRON_VIS.m
% Visualize a regular icosahedron with shading, edges, and vertex markers.
% Cleve-style: short, clear, and vectorized.

% Geometry (golden rectangles)
phi = (1+sqrt(5))/2;
V = [
    0,    1,    phi;
    0,    -1,    phi;
    0,    1,    -phi;
```

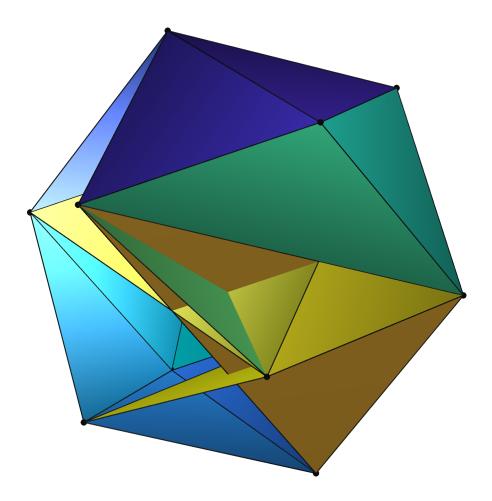
Are You Confident?

Thought for 39s >

Here's a compact, modern MATLAB script that builds an icosahedron from first principles (golden-ratio coordinates), then renders it nicely with lighting, vertex markers, and a wire overlay. It uses patch with Faces/Vertices as documented by MathWorks.

Are You Confident?

Regular Icosahedron



Thought for 39s >

Here's a compact, modern MATLAB script that builds an icosahedron from first principles (golden-ratio coordinates), then renders it nicely with lighting, vertex markers, and a wire overlay. It uses patch with Faces/Vertices as documented by MathWorks.

nope you got something wrong

Thought for 33s >

You're right—my face list was off. Here's a rock-solid version that **derives the faces automatically** from the vertex set using convhulln, so the connectivity is guaranteed correct for a regular icosahedron.

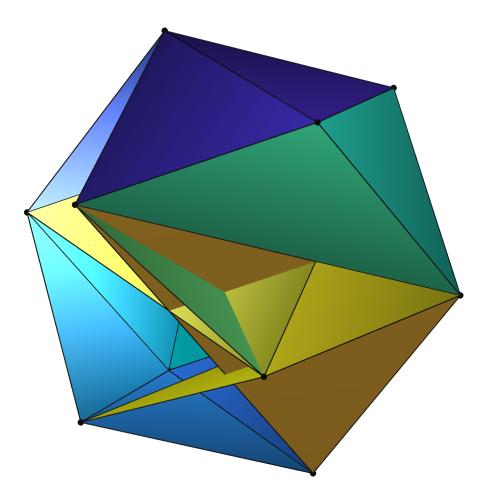
```
matlab

% ICOSAHEDRON_VIS.m
% Visualize a regular icosahedron (faces from convex hull).
% Cleve-style: compact, clear, vectorized.

% Geometry: golden ratio vertices
phi = (1+sqrt(5))/2;
V = [...
0  1  phi;
0  -1  phi;
0  1  -phi;
```

Are You Confident?

Regular Icosahedron



Thought for 39s >

Here's a compact, modern MATLAB script that builds an icosahedron from first principles (golden-ratio coordinates), then renders it nicely with lighting, vertex markers, and a wire overlay. It uses patch with Faces/Vertices as documented by MathWorks.

```
matlab

% ICOSAHEDRON_VIS.m
% Visualize a regular icosahedron with shading, edges, and vertex markers.
% Cleve-style: short, clear, and vectorized.

% Geometry (golden rectangles)
phi = (1+sqrt(5))/2;
V = [
    0,    1,    phi;
    0,    -1,    phi;
    0,    1,    -phi;
```


nope you got something wrong

Thought for 33s >

You're right—my face list was off. Here's a rock-solid version that **derives the faces automatically** from the vertex set using convhulln, so the connectivity is guaranteed correct for a regular icosahedron.

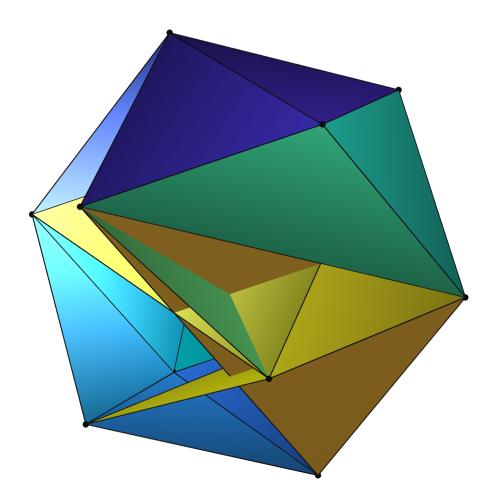
```
matlab

% ICOSAHEDRON_VIS.m
% Visualize a regular icosahedron (faces from convex hull).
% Cleve-style: compact, clear, vectorized.

% Geometry: golden ratio vertices
phi = (1+sqrt(5))/2;
V = [...
0  1  phi;
0  -1  phi;
0  1  -nhi;
```

Are You Confident?

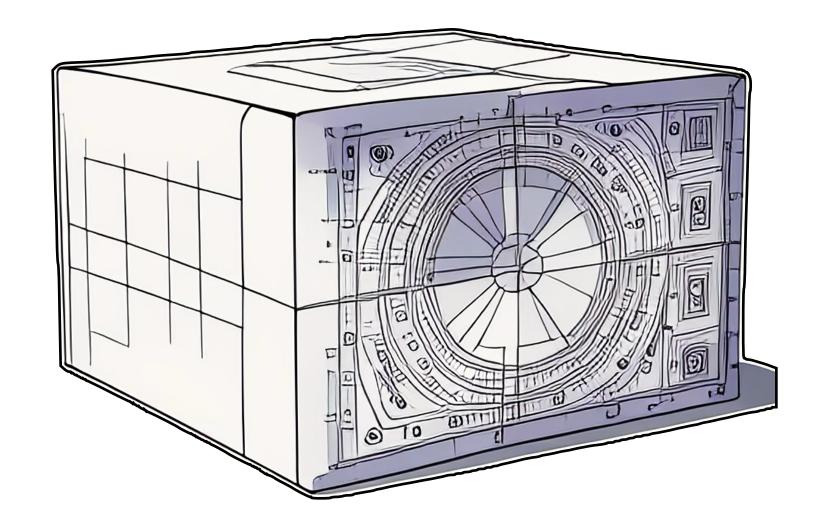
Regular Icosahedron



Regular Icosahedron

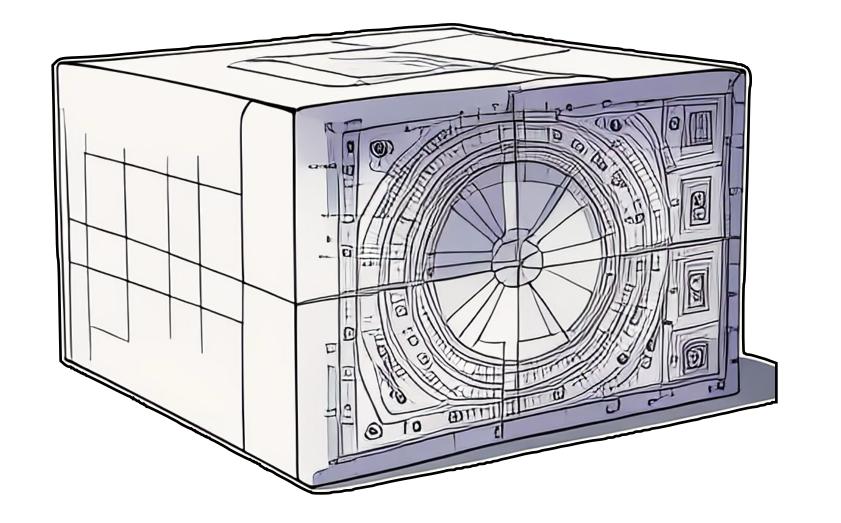
• Model errors, model discrepancies, or model inadequacies

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box



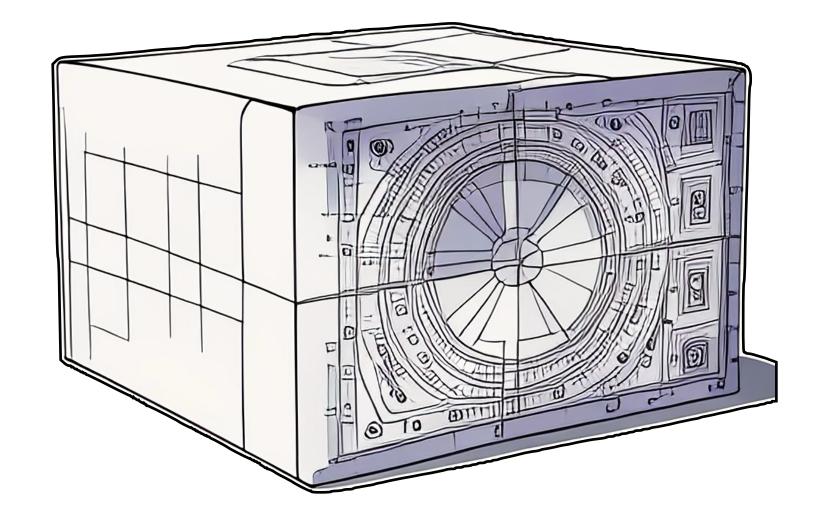
"Essentially, all models are wrong, but some are useful,"

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness



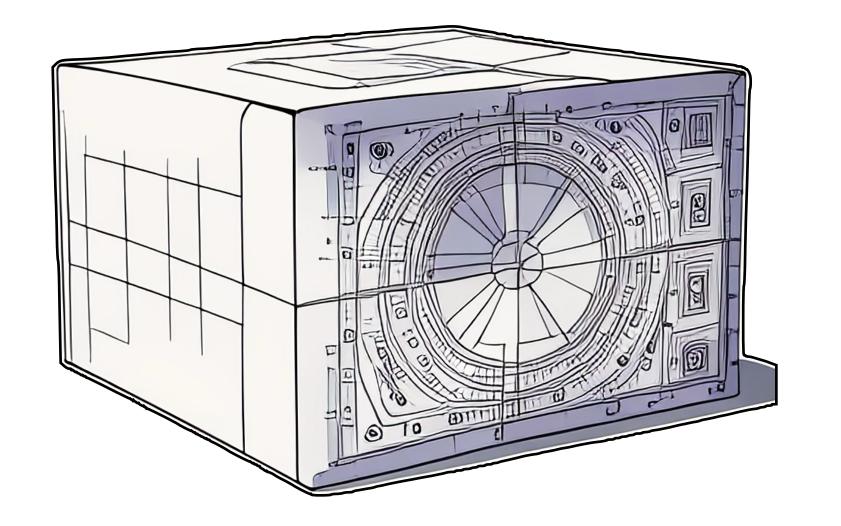
"Essentially, all models are wrong, but some are useful,"

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness
 - · Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.



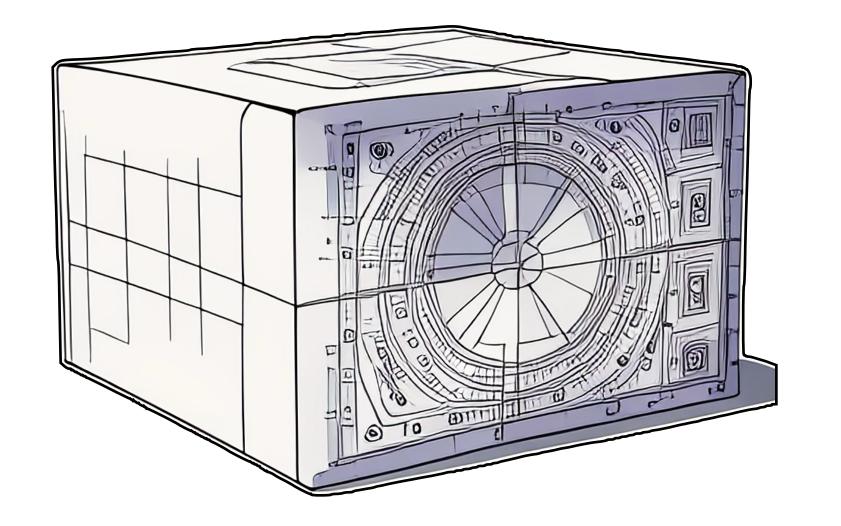
"Essentially, all models are wrong, but some are useful,"

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness
 - · Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.
- Sources of Systematic Uncertainties:



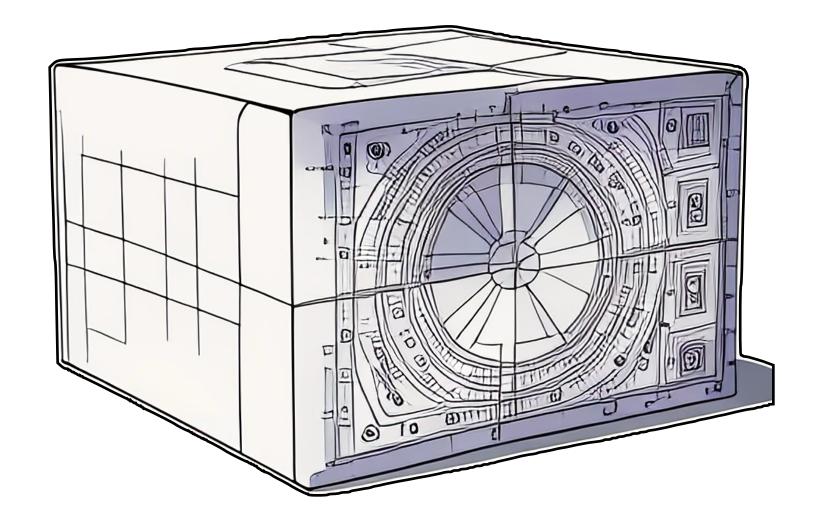
"Essentially, all models are wrong, but some are useful,"

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness
 - · Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.
- Sources of Systematic Uncertainties:
 - Simplifying model assumptions



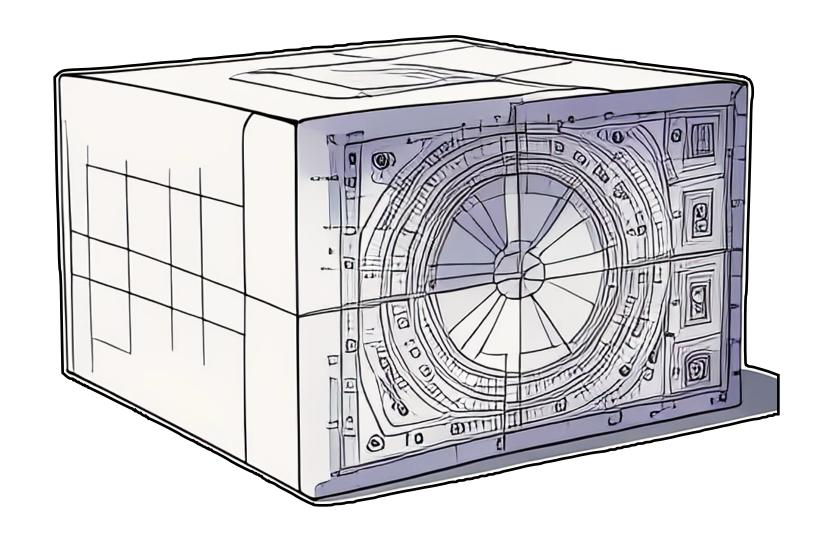
"Essentially, all models are wrong, but some are useful,"

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness
 - · Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.
- Sources of Systematic Uncertainties:
 - Simplifying model assumptions
 - Missing physics



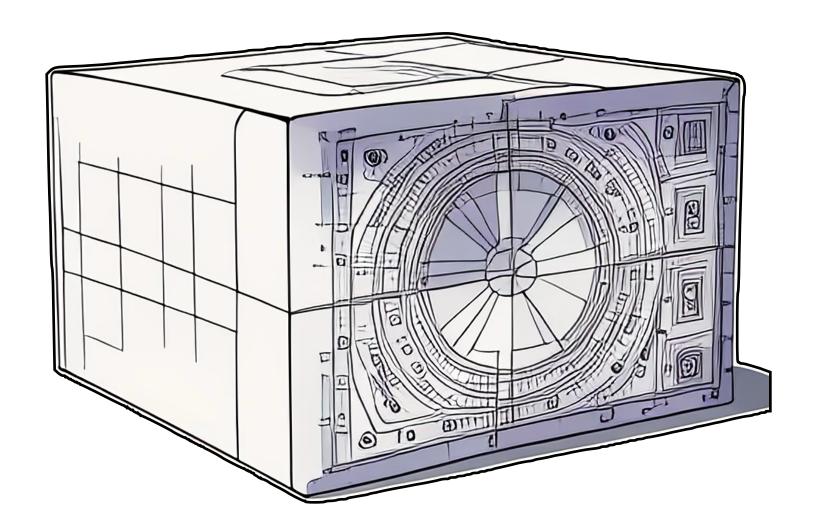
"Essentially, all models are wrong, but some are useful,"

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness
 - · Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.
- Sources of Systematic Uncertainties:
 - Simplifying model assumptions
 - Missing physics
 - Basic lack of knowledge



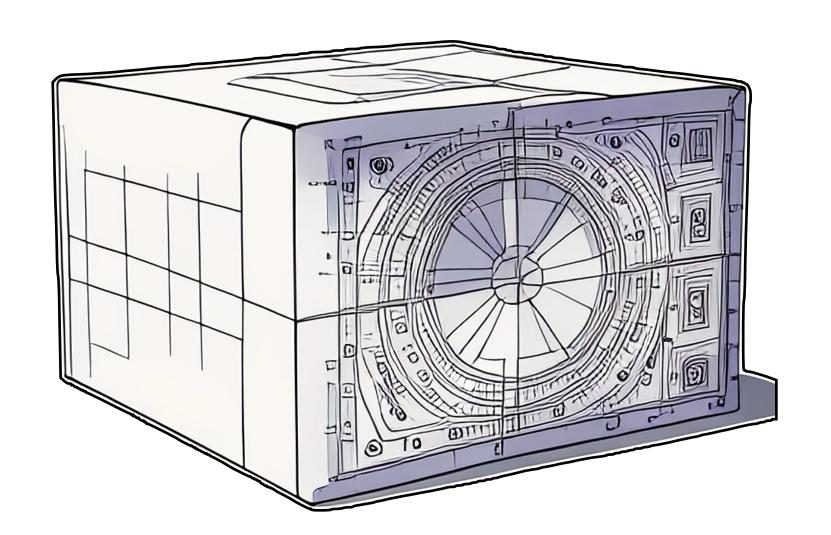
"Essentially, all models are wrong, but some are useful,"

- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness
 - · Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.
- Sources of Systematic Uncertainties:
 - Simplifying model assumptions
 - Missing physics
 - Basic lack of knowledge
- Uncertainty Propagation

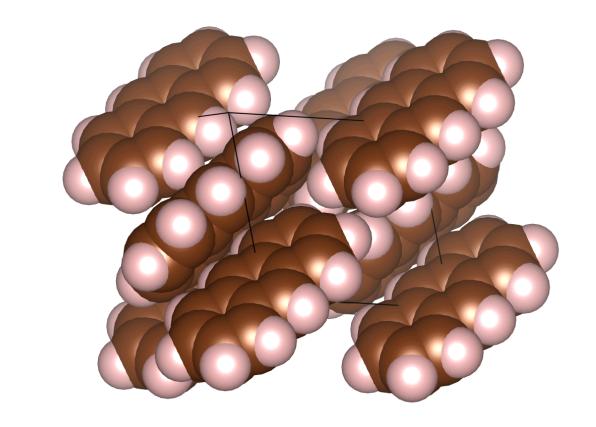


"Essentially, all models are wrong, but some are useful,"

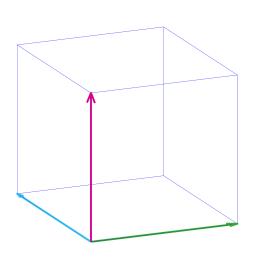
- Model errors, model discrepancies, or model inadequacies
- The famous quote of Georg E.P. Box
 - Invented and developed the idea of robustness
 - · Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.
- Sources of Systematic Uncertainties:
 - Simplifying model assumptions
 - Missing physics
 - Basic lack of knowledge
- Uncertainty Propagation
 - · Propagate systematic uncertainties through models to construct interval estimates

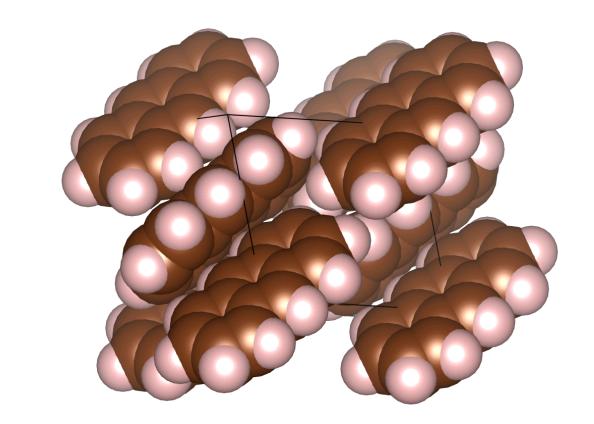


"Essentially, all models are wrong, but some are useful,"

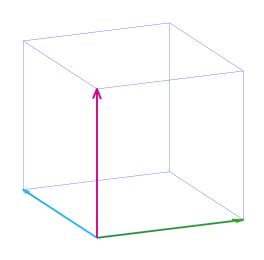


•
$$\operatorname{vol}(U) = \det(U)$$

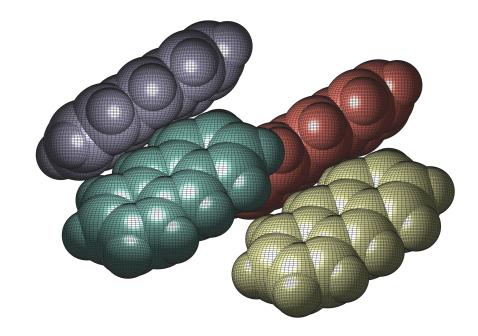




$$\bullet \ \mathrm{vol}(U) = \det(U)$$

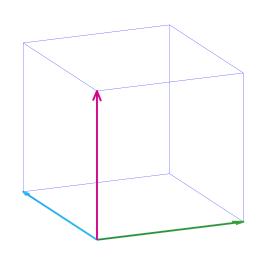


$$\cdot \operatorname{vol}(O) = \int_O dV$$

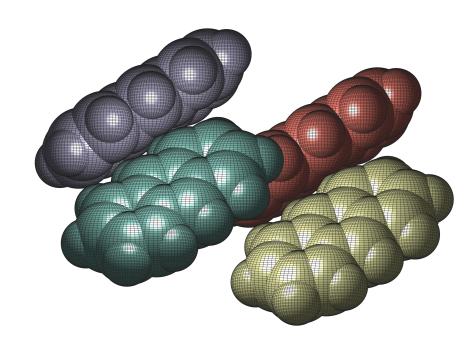


- \cdot O subset of occupied by the van der Waals spheres
- dV natural volume form on ${\bf R}^3$

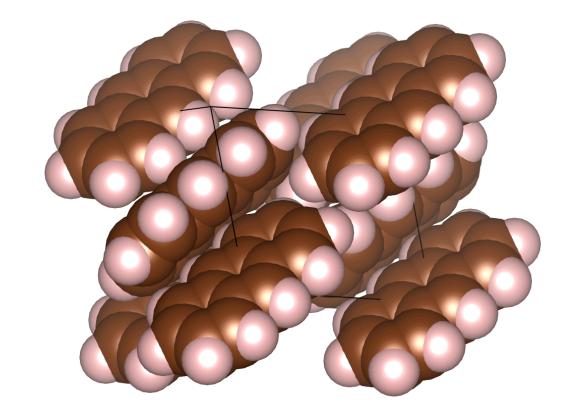
$$\cdot \operatorname{vol}(U) = \det(U)$$

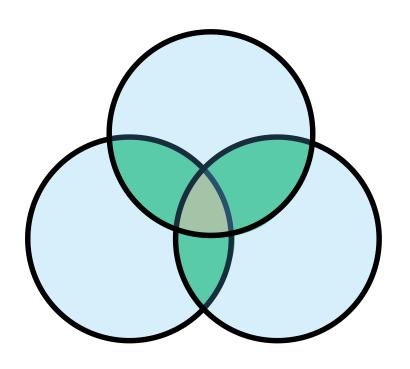


$$\cdot \operatorname{vol}(O) = \int_O dV$$



- \cdot O subset of occupied by the van der Waals spheres
- dV natural volume form on ${\bf R}^3$

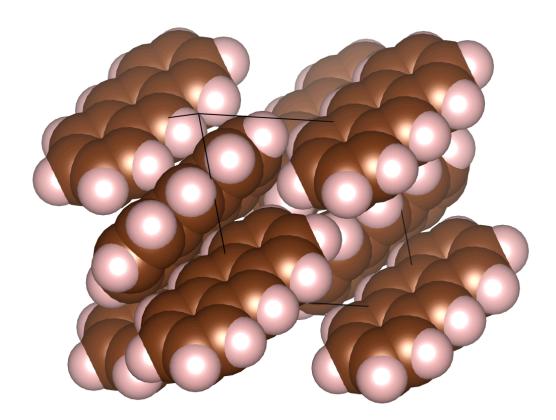




$$S_1 + S_2 + S_3 - S_1 \cap S_2 - S_1 \cap S_3 - S_2 \cap S_3 + S_1 \cap S_2 \cap S_3$$

,
$$\mathrm{vol}(O) = \int \mathbf{1}_O dU$$

$$\cdot \mathbf{1}_O \text{- indicator function over } U$$

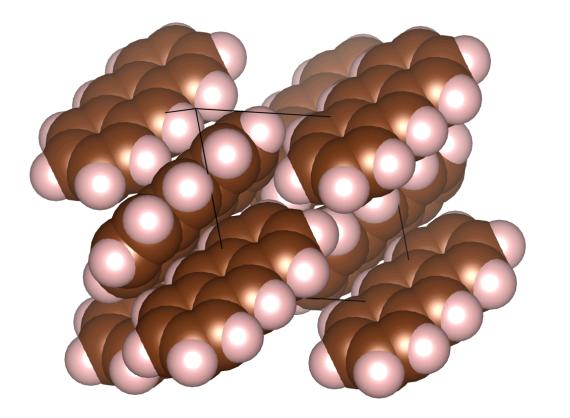


.
$$\mathrm{vol}(O) = \int \mathbf{1}_O dU$$

$$\cdot \mathbf{1}_O \text{- indicator function over } U$$

ullet Change of coordinates to an integral over the unit cube C

$$\operatorname{vol}(O) = \int \mathbf{1}_{U^{-1}O} \det(U) dC$$



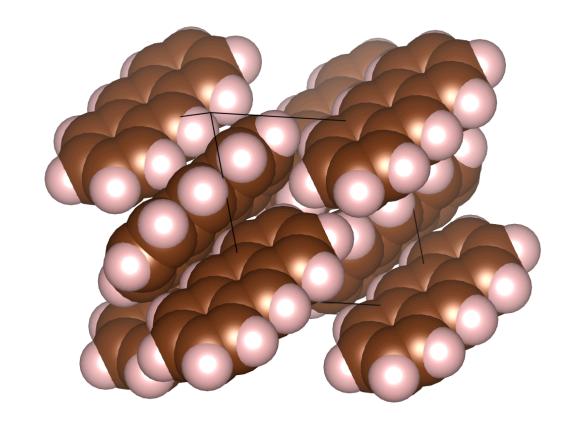
.
$$\mathrm{vol}(O) = \int \mathbf{1}_O dU$$

$$\cdot \mathbf{1}_O \text{- indicator function over } U$$

ullet Change of coordinates to an integral over the unit cube C

$$\operatorname{vol}(O) = \int \mathbf{1}_{U^{-1}O} \det(U) dC$$

$$\rho = \frac{\operatorname{vol}(O)}{\operatorname{vol}(U)} \qquad \longrightarrow \qquad \rho = \int \mathbf{1}_{U^{-1}O}(U)dC$$



.
$$\mathrm{vol}(O) = \int \mathbf{1}_O dU$$

$$\cdot \mathbf{1}_O \text{- indicator function over } U$$

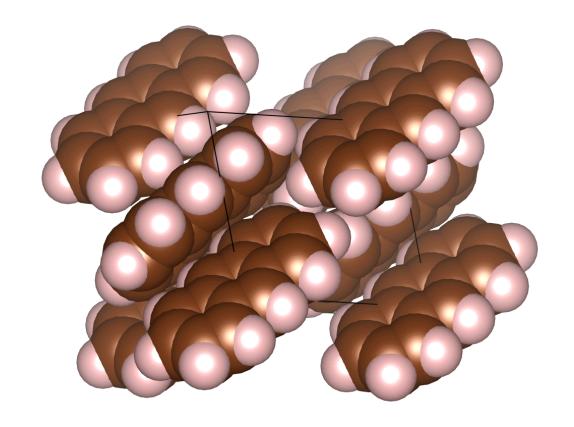
ullet Change of coordinates to an integral over the unit cube C

$$\operatorname{vol}(O) = \int \mathbf{1}_{U^{-1}O} \det(U) dC$$

$$\rho = \frac{\operatorname{vol}(O)}{\operatorname{vol}(U)} \qquad \longrightarrow \qquad \rho = \int \mathbf{1}_{U^{-1}O}(U)dC$$

•Uniform random variable on a unit cube $C \sim \mathbf{X}$

$$\rho = \mathbf{E} \left[1_{U^{-1}O} \right] = \mathbf{P} \left(X \in U^{-1}O \right)$$



.
$$\mathrm{vol}(O) = \int \mathbf{1}_O dU$$

$$\cdot \mathbf{1}_O \text{- indicator function over } U$$

ullet Change of coordinates to an integral over the unit cube C

$$\operatorname{vol}(O) = \int \mathbf{1}_{U^{-1}O} \det(U) dC$$

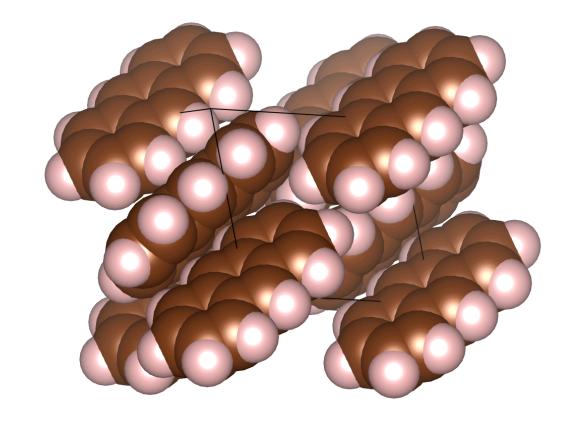
$$\rho = \frac{\operatorname{vol}(O)}{\operatorname{vol}(U)} \qquad \longrightarrow \qquad \rho = \int \mathbf{1}_{U^{-1}O}(U)dC$$

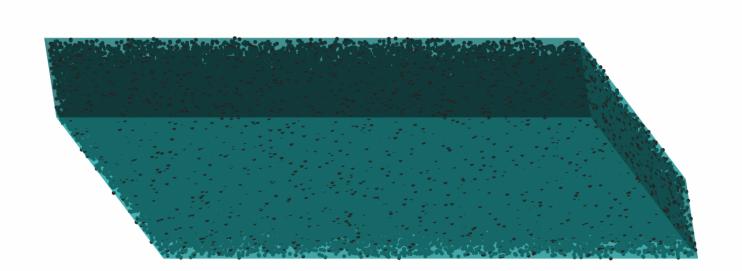
•Uniform random variable on a unit cube $C \sim X$

$$\rho = \mathbf{E} \left[1_{U^{-1}O} \right] = \mathbf{P} \left(X \in U^{-1}O \right)$$

Draw realisations o a random vector

$$X_1, ... X_N \sim C$$





.
$$\operatorname{vol}(O) = \int \mathbf{1}_O dU$$
 . $\mathbf{1}_O$ - indicator function over U

ullet Change of coordinates to an integral over the unit cube C

$$\operatorname{vol}(O) = \int \mathbf{1}_{U^{-1}O} \det(U) dC$$

$$\rho = \frac{\operatorname{vol}(O)}{\operatorname{vol}(U)} \qquad \longrightarrow \qquad \rho = \int \mathbf{1}_{U^{-1}O}(U)dC$$

•Uniform random variable on a unit cube $C \sim \mathbf{X}$

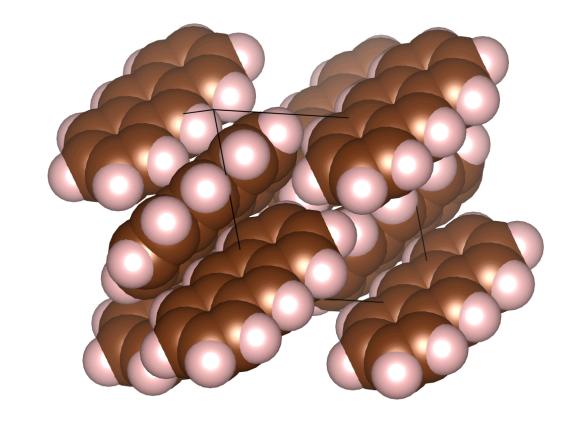
$$\rho = \mathbf{E} \left[1_{U^{-1}O} \right] = \mathbf{P} \left(X \in U^{-1}O \right)$$

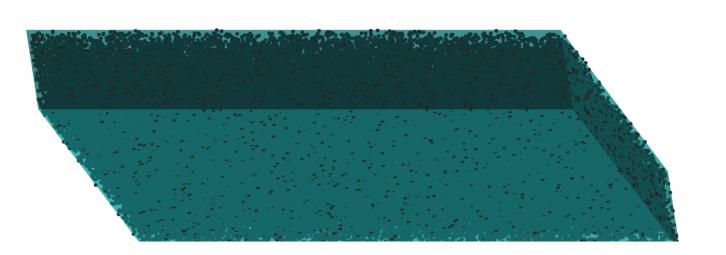
Draw realisations o a random vector

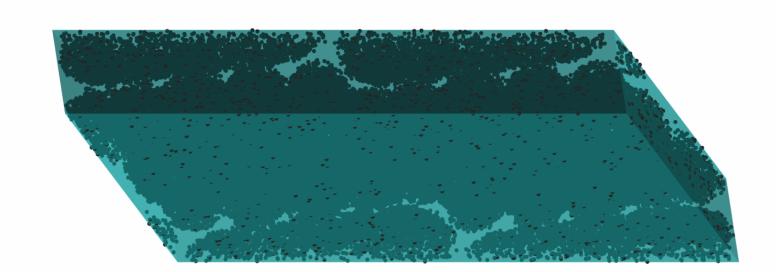
$$X_1, ... X_N \sim C$$

• Estimate the packing coefficient

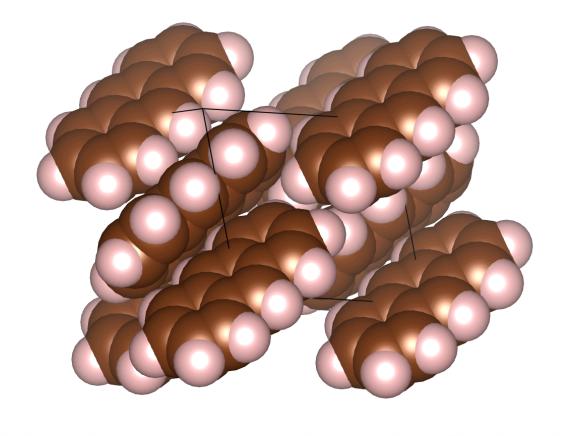
$$\hat{\rho} = \frac{\#\{X_i \in U^{-1}O\}}{N}$$

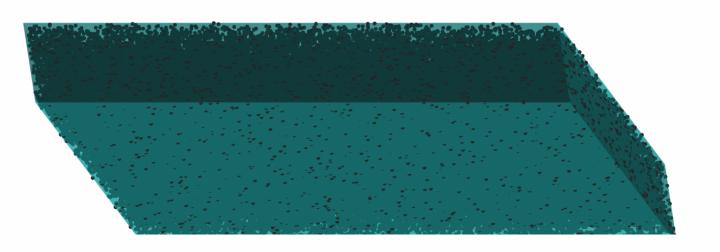


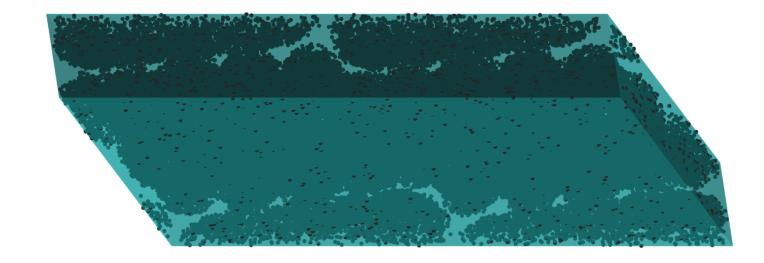




• N=100000
$$\#\{X_i \in U^{-1}O\} = 76812$$

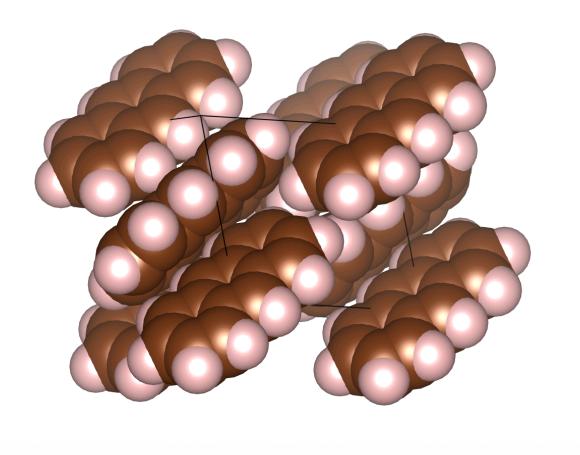


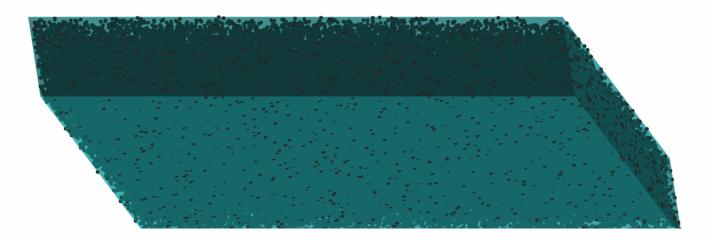


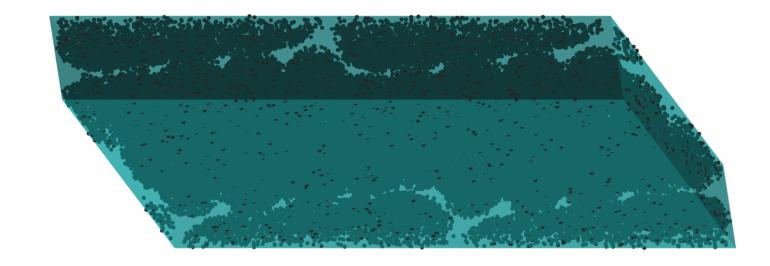


• N=100000
$$\#\{X_i \in U^{-1}O\} = 76812$$

$$\hat{\rho} = 0.76812$$

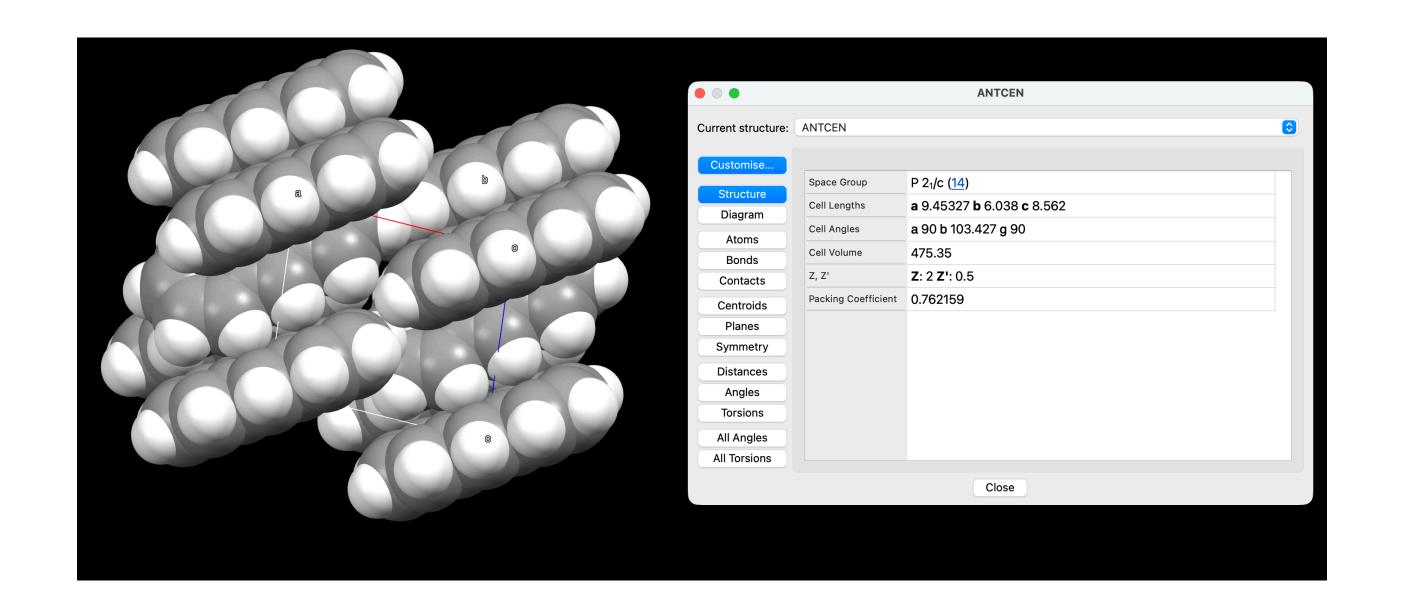


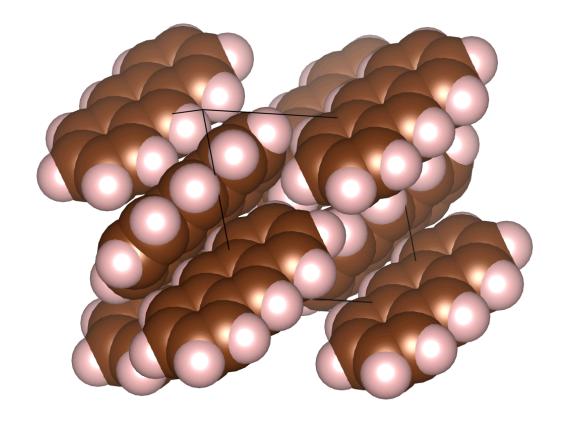


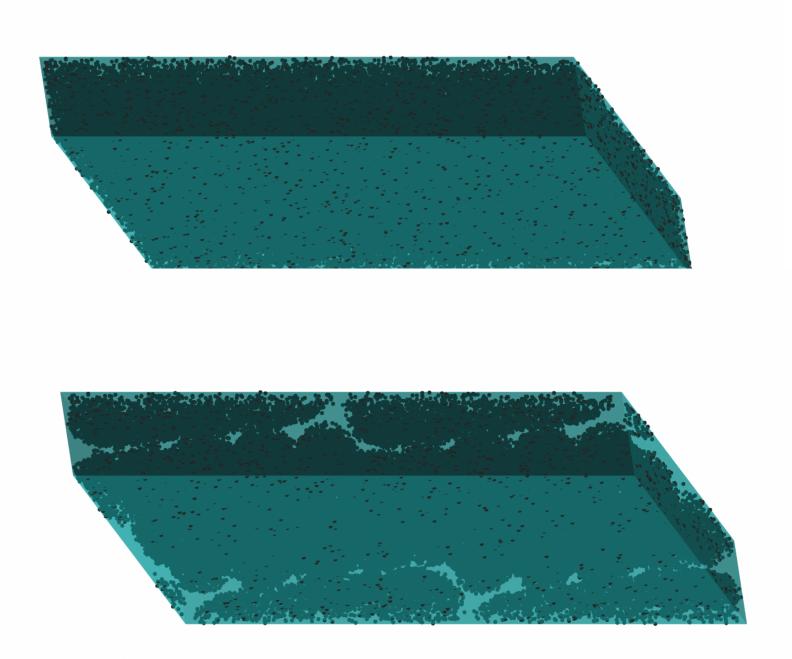


• N=100000
$$\#\{X_i \in U^{-1}O\} = 76812$$

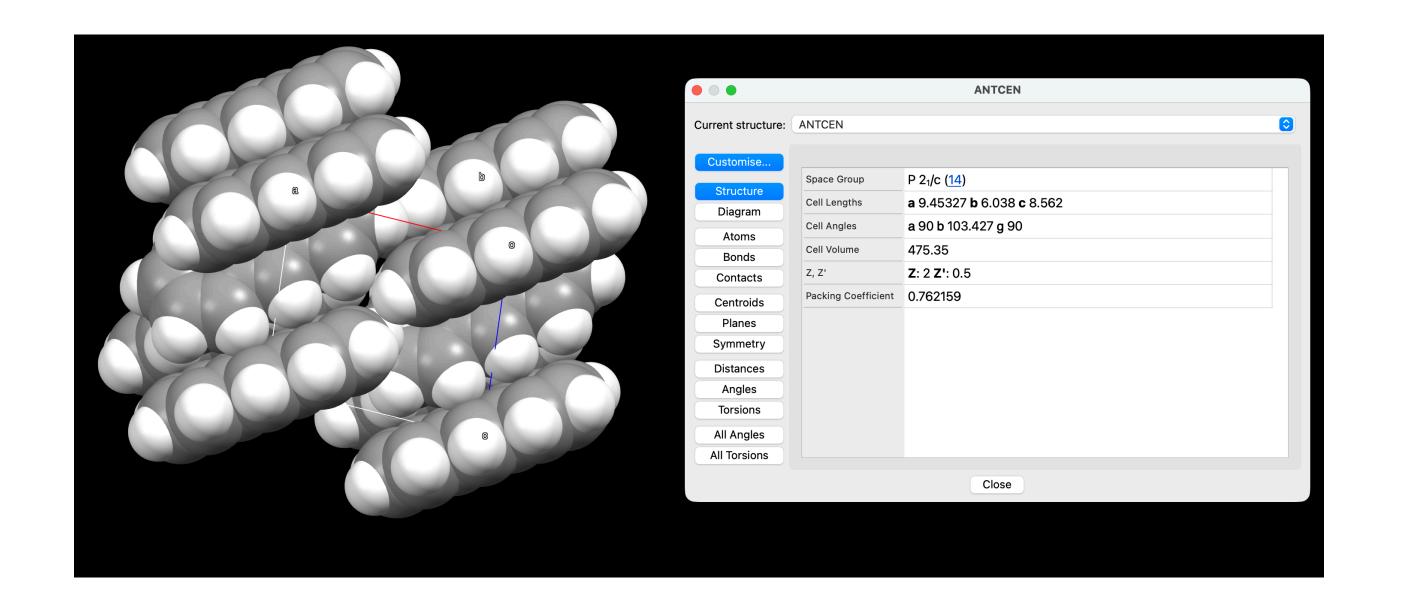
- $\hat{\rho} = 0.76812$
- CCDC Mercury: 0.762159

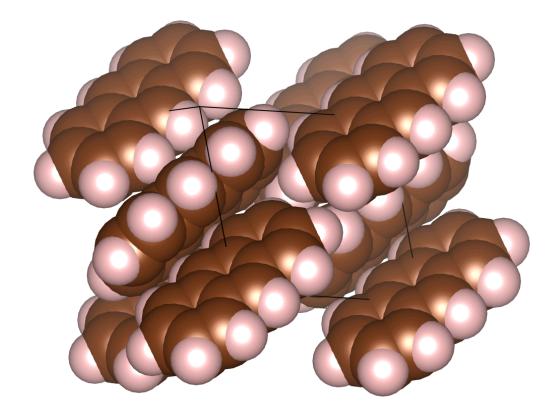


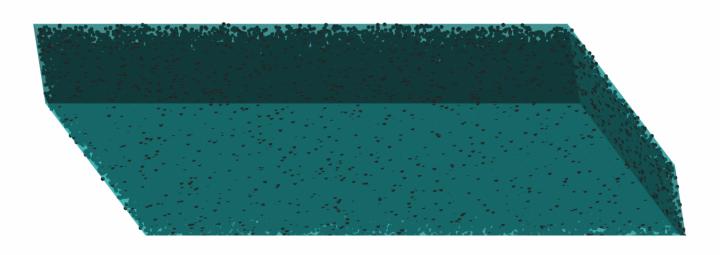


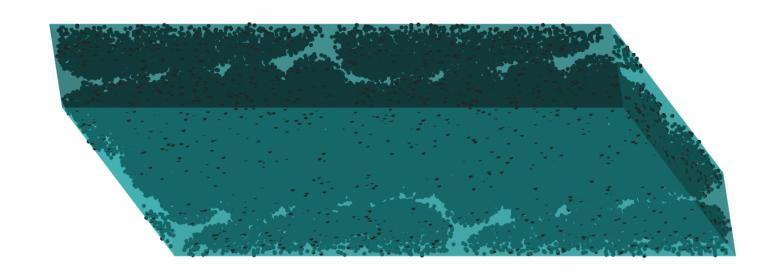


- N=100000 $\#\{X_i \in U^{-1}O\} = 76812$
- $\hat{\rho} = 0.76812$
- CCDC Mercury: 0.762159
- Which point estimate to trust?









•
$$X_i$$
 - Bernoulli trial

$$\mathbf{X} = \sum_{i=1}^{N} X_i$$

• X_i - Bernoulli trial $\mathbf{X} = \sum_{i=1}^{N} X_i$ binomially distributed random variable

Expected value: $N\rho$

Variance: $N\rho (1-\rho)$

• X_i - Bernoulli trial $\mathbf{X} = \sum_{i=1}^{N} X_i$ binomially distributed random variable

Expected value: $N\rho$

Variance: $N\rho \left(1-\rho\right)$

• Central limit theorem: $\mathbf{Z} = \frac{\sqrt{N}(\hat{\rho} - \rho)}{\sqrt{\rho(1 - \rho)}} \longrightarrow N(0, 1)$

Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

•
$$X_i$$
 - Bernoulli trial $\mathbf{X} = \sum_{i=1}^N X_i$ binomially distributed random variable Variance: $N\rho$ (1 – ρ

Variance: $N\rho (1-\rho)$

• Central limit theorem: $\mathbf{Z} = \frac{\sqrt{N}(\hat{\rho} - \rho)}{\sqrt{\rho(1 - \rho)}} \xrightarrow{F} N(0, 1)$

Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

• Confidence interval:
$$P\left(\left|\frac{(\rho-\hat{\rho})\sqrt{N}}{\sqrt{\hat{\rho}(1-\hat{\rho})}}\right| \ge 2z\right) = 1-\alpha$$

Random quantity is the interval.

• CCDC Mercury: 0.762159

•
$$X_i$$
 - Bernoulli trial $\mathbf{X} = \sum_{i=1}^N X_i$ binomially distributed random variable Variance: $N\rho$ (1 – ρ)

• Central limit theorem:
$$\mathbf{Z} = \frac{\sqrt{N}(\hat{\rho} - \rho)}{\sqrt{\rho(1 - \rho)}} \xrightarrow{F} N(0, 1)$$

Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

• Confidence interval:
$$P\left(\left|\frac{(\rho-\hat{\rho})\sqrt{N}}{\sqrt{\hat{\rho}(1-\hat{\rho})}}\right| \ge 2z\right) = 1-\alpha$$

Random quantity is the interval.

• Interval estimate:
$$\left[\hat{\rho} - \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z; \hat{\rho} + \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z\right] \qquad z - 1 - \alpha \text{ quantile of the standard normal distribution}$$

•
$$X_i$$
 - Bernoulli trial $\mathbf{X} = \sum_{i=1}^N X_i$ binomially distributed random variable Variance: $N\rho$ (1 – ρ)

• Central limit theorem:
$$\mathbf{Z} = \frac{\sqrt{N} \, (\hat{\rho} - \rho)}{\sqrt{\rho \, (1 - \rho)}} \stackrel{F}{\longrightarrow} N(0,1)$$
 Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

• Confidence interval:
$$P\left(\left|\frac{(\rho-\hat{\rho})\sqrt{N}}{\sqrt{\hat{\rho}\left(1-\hat{\rho}\right)}}\right| \ge 2z\right) = 1-\alpha$$

Random quantity is the interval.

• Interval estimate:
$$\left[\hat{\rho} - \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z; \hat{\rho} + \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z\right]$$
 $z - 1 - \alpha$ quantile of the standard normal distribution

• A way to express confidence in the packing coefficient estimate $\hat{
ho}$

•
$$X_i$$
 - Bernoulli trial $\mathbf{X} = \sum_{i=1}^N X_i$ binomially distributed random variable Variance: $N\rho$ (1 – ρ)

• Central limit theorem:
$$\mathbf{Z} = \frac{\sqrt{N}(\hat{\rho} - \rho)}{\sqrt{\rho(1 - \rho)}} \xrightarrow{F} N(0, 1)$$

Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

• Confidence interval:
$$P\left(\left|\frac{(\rho-\hat{\rho})\sqrt{N}}{\sqrt{\hat{\rho}(1-\hat{\rho})}}\right| \ge 2z\right) = 1-\alpha$$

Random quantity is the interval.

• Interval estimate:
$$\left[\hat{\rho} - \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z; \hat{\rho} + \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z\right] \qquad z - 1 - \alpha \text{ quantile of the standard normal distribution}$$

- A way to express confidence in the packing coefficient estimate $\hat{
 ho}$
 - The tighter the interval, the higher the confidence in the estimate.

Interval Estimate of the Packing Coefficient

•
$$X_i$$
 - Bernoulli trial $\mathbf{X} = \sum_{i=1}^N X_i$ binomially distributed random variable Variance: $N\rho$ (1 – ρ)

• Central limit theorem:
$$\mathbf{Z} = \frac{\sqrt{N}(\hat{\rho} - \rho)}{\sqrt{\rho(1 - \rho)}} \xrightarrow{F} N(0, 1)$$

Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

• Confidence interval:
$$P\left(\left|\frac{(\rho-\hat{\rho})\sqrt{N}}{\sqrt{\hat{\rho}\left(1-\hat{\rho}\right)}}\right| \ge 2z\right) = 1-\alpha$$

Random quantity is the interval.

• Interval estimate:
$$\left[\hat{\rho} - \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z; \hat{\rho} + \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z\right] \qquad z - 1 - \alpha \text{ quantile of the standard normal distribution}$$

- ullet A way to express confidence in the packing coefficient estimate $\hat{
 ho}$
 - · The tighter the interval, the higher the confidence in the estimate.
- ullet Even better, sample until the size of this interval to be less than some constant c with probability p

$$P\left(|\hat{\rho} - \rho| < 2z\sqrt{\frac{\hat{\rho}\left(1 - \hat{\rho}\right)}{N}}\right) = p$$

Interval Estimate of the Packing Coefficient

•
$$X_i$$
 - Bernoulli trial $\mathbf{X} = \sum_{i=1}^N X_i$ binomially distributed random variable Variance: $N\rho$ (1 – ρ)

Variance:
$$N\rho (1-\rho)$$

• Central limit theorem:
$$\mathbf{Z} = \frac{\sqrt{N}(\hat{\rho} - \rho)}{\sqrt{\rho(1 - \rho)}} \xrightarrow{F} N(0, 1)$$

Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

• Confidence interval:
$$P\left(\left|\frac{(\rho-\hat{\rho})\sqrt{N}}{\sqrt{\hat{\rho}\left(1-\hat{\rho}\right)}}\right| \ge 2z\right) = 1-\alpha$$

Random quantity is the interval.

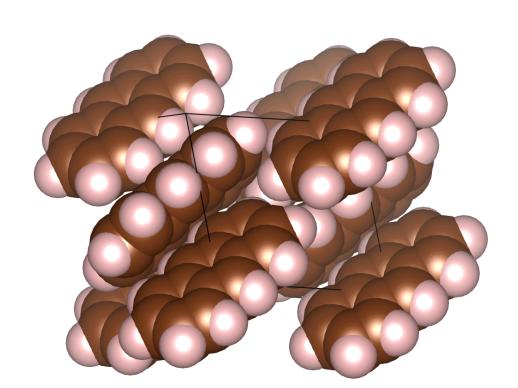
• Interval estimate:
$$\left[\hat{\rho} - \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z; \hat{\rho} + \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z\right]$$
 $z - 1 - \alpha$ quantile of the standard normal distribution

- A way to express confidence in the packing coefficient estimate $\hat{\rho}$
 - The tighter the interval, the higher the confidence in the estimate.
- ullet Even better, sample until the size of this interval to be less than some constant c with probability p

$$P\left(|\hat{\rho} - \rho| < 2z\sqrt{\frac{\hat{\rho}\left(1 - \hat{\rho}\right)}{N}}\right) = p$$

•
$$|\hat{\rho} - \rho| < 0.001$$

•
$$p = 0.999$$



Interval Estimate of the Packing Coefficient

•
$$X_i$$
 - Bernoulli trial $\mathbf{X} = \sum_{i=1}^N X_i$ binomially distributed random variable Variance: $N\rho$ (1 – ρ

Variance:
$$N\rho (1-\rho)$$

• Central limit theorem:
$$\mathbf{Z} = \frac{\sqrt{N}(\hat{\rho} - \rho)}{\sqrt{\rho(1 - \rho)}} \xrightarrow{F} N(0, 1)$$

Z converges in distribution to a normally distributed random variable with a mean of 0 and a variance of 1

• Confidence interval:
$$P\left(\left|\frac{(\rho-\hat{\rho})\sqrt{N}}{\sqrt{\hat{\rho}(1-\hat{\rho})}}\right| \ge 2z\right) = 1-\alpha$$

• p = 0.999

Random quantity is the interval.

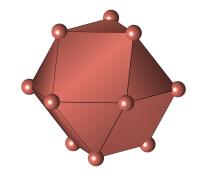
• Interval estimate:
$$\left[\hat{\rho} - \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z; \hat{\rho} + \frac{\hat{\rho}(1-\hat{\rho})}{\sqrt{N}}z\right]$$
 $z - 1 - \alpha$ quantile of the standard normal distribution

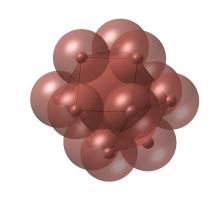
- A way to express confidence in the packing coefficient estimate $\hat{\rho}$
 - The tighter the interval, the higher the confidence in the estimate.
- ullet Even better, sample until the size of this interval to be less than some constant c with probability p

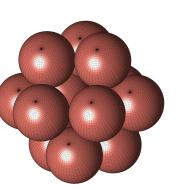
$$P\left(|\hat{\rho} - \rho| < 2z\sqrt{\frac{\hat{\rho}\left(1 - \hat{\rho}\right)}{N}}\right) = p$$

•
$$|\hat{\rho} - \rho| < 0.001$$
 • $\hat{\rho} \approx 0.767827$ N ~ 9,000,000

• A collection of equal spheres with centres on the vertices of a cuboctahedron.

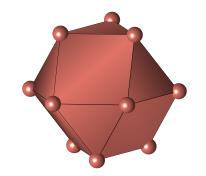


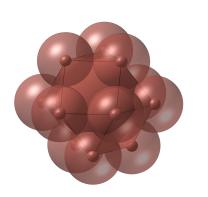


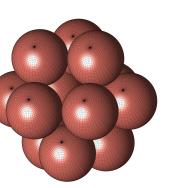


• A collection of equal spheres with centres on the vertices of a cuboctahedron.

Number of vertices: 12

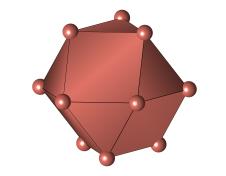


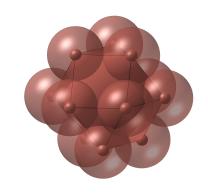


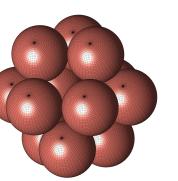


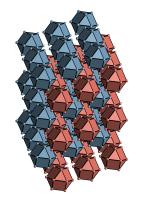
- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

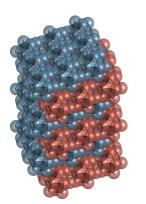
$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352...$$

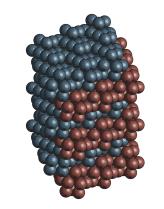










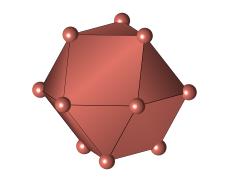


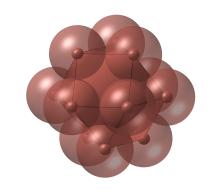
- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

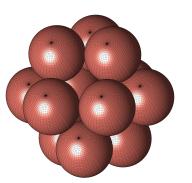
$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352.$$

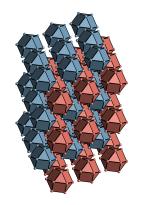
Complementary packing

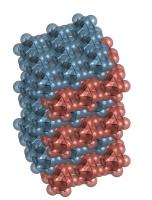
$$\rho = \frac{1}{13} \frac{\pi}{\sqrt{18}} \approx 0.05696...$$

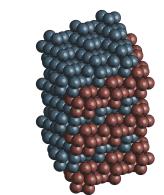


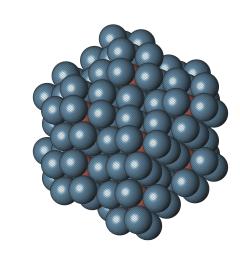


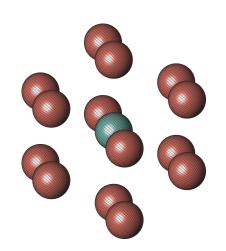










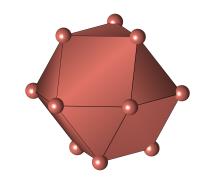


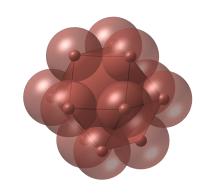
- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

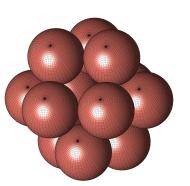
$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352...$$

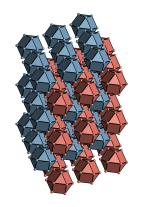
$$\rho = \frac{1}{13} \frac{\pi}{\sqrt{18}} \approx 0.05696...$$

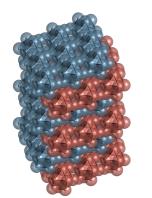
• Face-Center Cubic (FCC) close-packing of equal spheres $\rho = \frac{\pi}{\sqrt{18}} \approx 0.74048...$

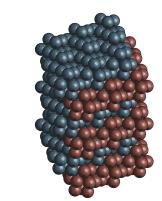


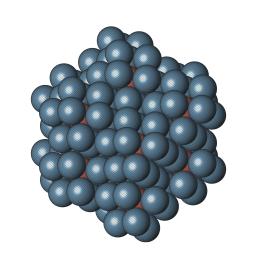


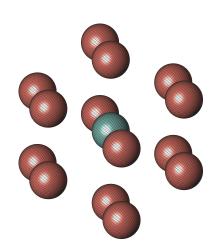


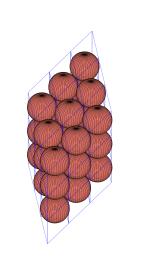










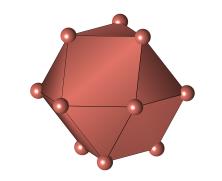


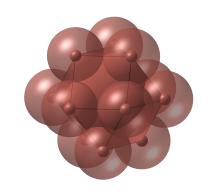
- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

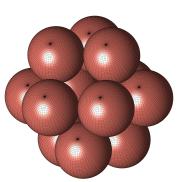
$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352.$$

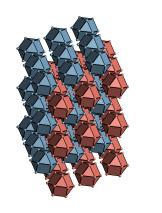
$$\rho = \frac{1}{13} \frac{\pi}{\sqrt{18}} \approx 0.05696..$$

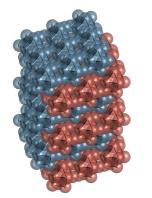
- Face-Center Cubic (FCC) close-packing of equal spheres $\rho = \frac{\pi}{\sqrt{18}} \approx 0.74048...$
- Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey 'The Six-Cornered Snowflake'

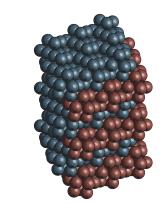


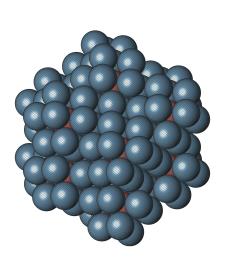


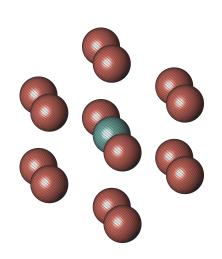


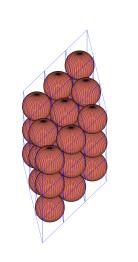








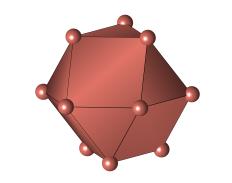


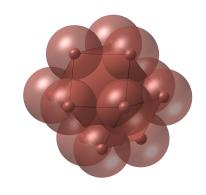


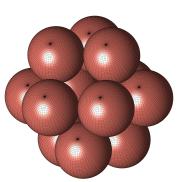
- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

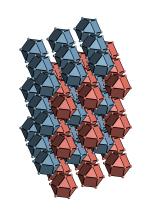
$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352...$$

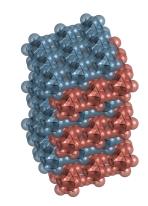
- Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey 'The Six-Cornered Snowflake'
- Proved to be correct by Thomas Hales in 2005

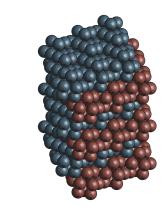


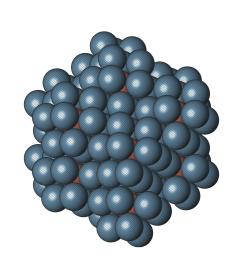


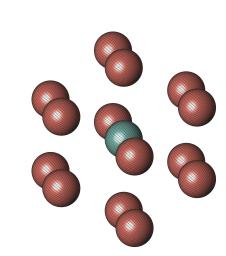


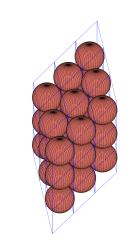












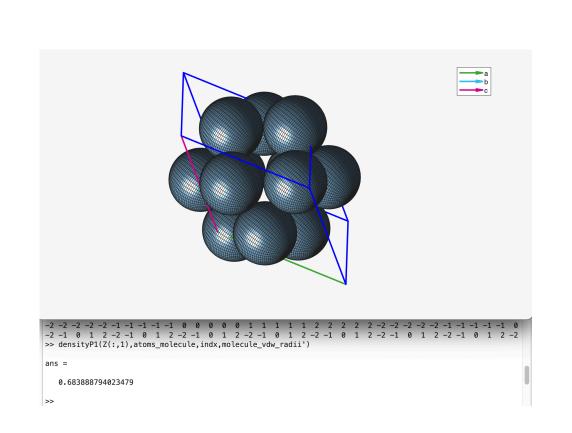
- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

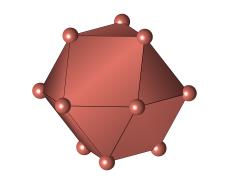
$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352.$$

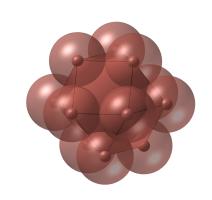
$$\rho = \frac{1}{13} \frac{\pi}{\sqrt{18}} \approx 0.05696...$$

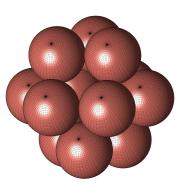
- Face-Center Cubic (FCC) close-packing of equal spheres $\rho = \frac{\pi}{\sqrt{18}} \approx 0.74048...$
- Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey 'The Six-Cornered Snowflake'
- Proved to be correct by Thomas Hales in 2005

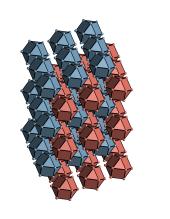
$$\epsilon = 0.00036$$

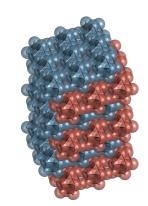


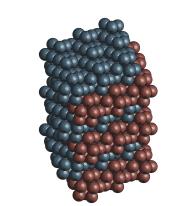


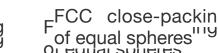


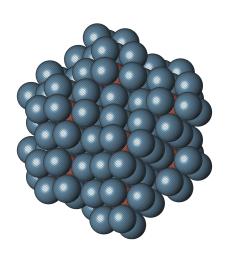


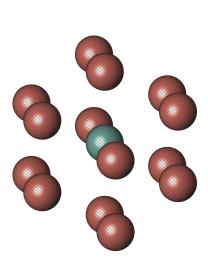


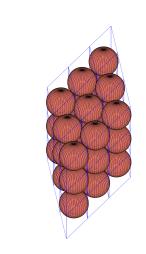












- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

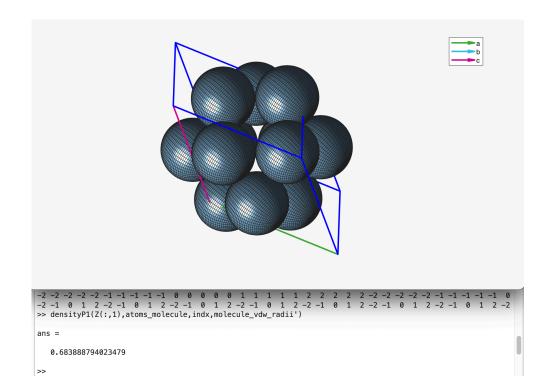
$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352..$$

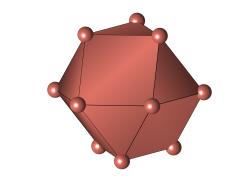
$$\rho = \frac{1}{13} \frac{\pi}{\sqrt{18}} \approx 0.05696...$$

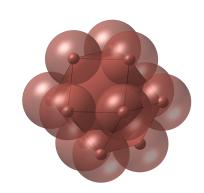
- Face-Center Cubic (FCC) close-packing of equal spheres $\rho = \frac{\pi}{\sqrt{18}} \approx 0.74048...$
- Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey 'The Six-Cornered Snowflake'
- Proved to be correct by Thomas Hales in 2005

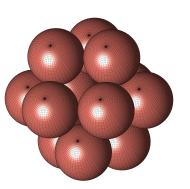
$$\epsilon = 0.00036$$

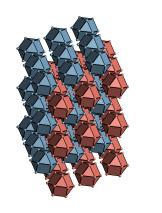
 $\epsilon = 0.00415$ CCDC Mercury: 0.68767

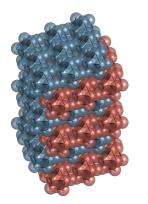


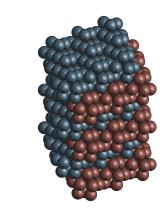


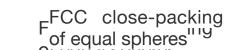


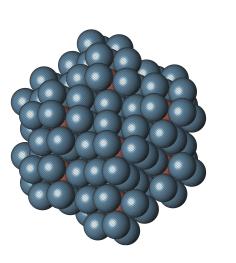


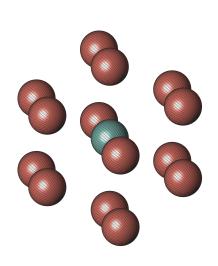


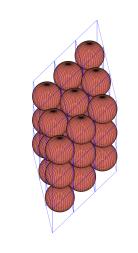


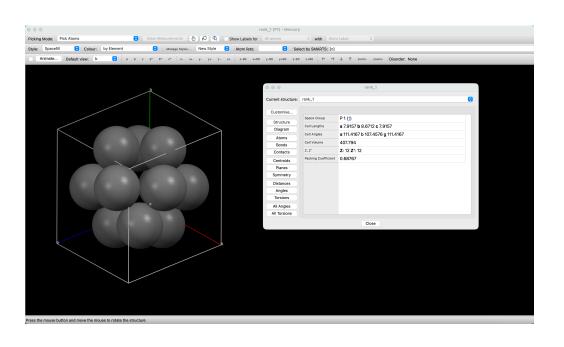












- A collection of equal spheres with centres on the vertices of a cuboctahedron.
 - Number of vertices: 12
 - Radius of the spheres set to the van der Waals radius of carbon.

$$\rho = \frac{12}{13} \frac{\pi}{\sqrt{18}} \approx 0.68352..$$

$$\rho = \frac{1}{13} \frac{\pi}{\sqrt{18}} \approx 0.05696...$$

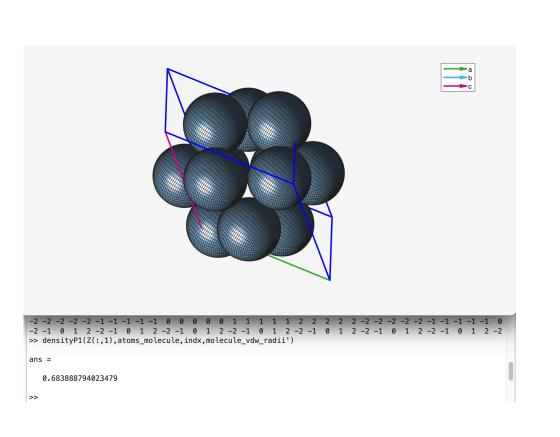
- Face-Center Cubic (FCC) close-packing of equal spheres $\rho = \frac{\pi}{\sqrt{18}} \approx 0.74048...$
- Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey 'The Six-Cornered Snowflake'
- Proved to be correct by Thomas Hales in 2005

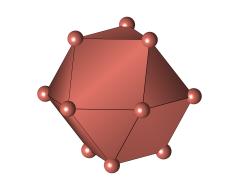
$$\epsilon = 0.0003$$

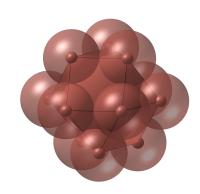
$$\epsilon = 0.00036$$
 $N = 9,370,000$

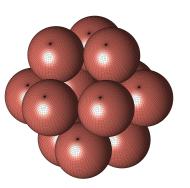
CCDC Mercury: 0.68767

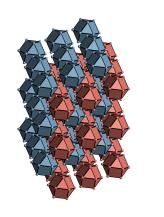
$$\epsilon = 0.00415$$

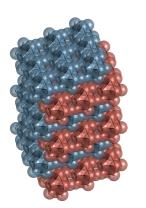


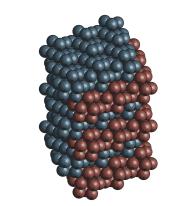


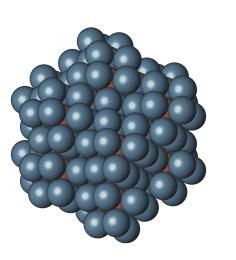


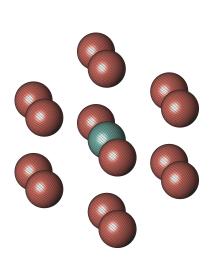


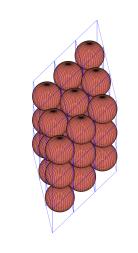


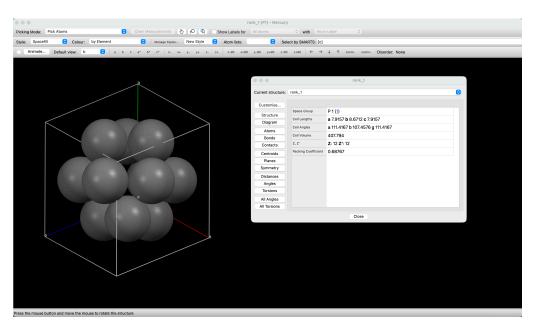












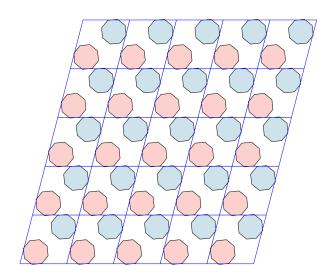
Stochastic optimisation problems

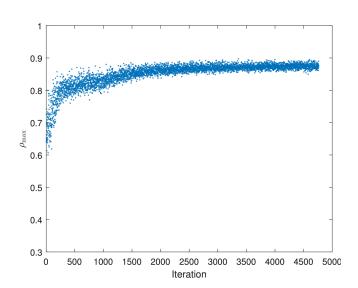
- Stochastic optimisation problems
 - Uses the tools of probability theory and mathematical statistics.

- Stochastic optimisation problems
 - Uses the tools of probability theory and mathematical statistics.
 - Situations where the optimum is unknown.

- Stochastic optimisation problems
 - Uses the tools of probability theory and mathematical statistics.
 - Situations where the optimum is unknown.

• Example: Packing regular octagons in the plane group p2.

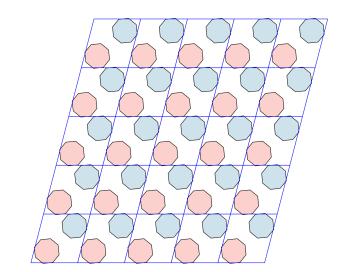


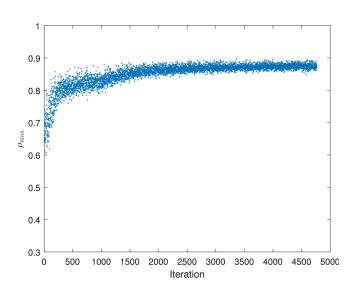


Stochastic optimisation problems

- Uses the tools of probability theory and mathematical statistics.
- Situations where the optimum is unknown.

- Example: Packing regular octagons in the plane group p2.
- How to express confidence in the best solution found?

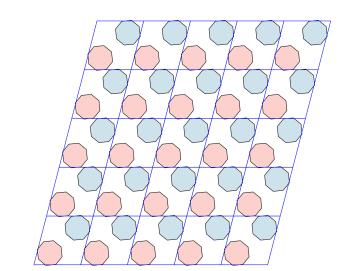


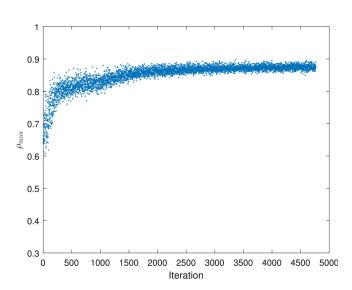


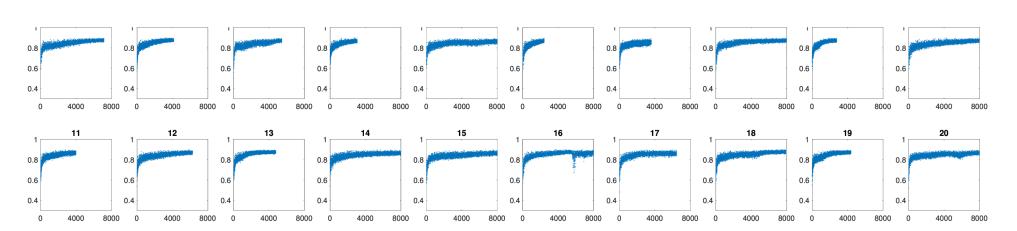
Stochastic optimisation problems

- Uses the tools of probability theory and mathematical statistics.
- Situations where the optimum is unknown.

- Example: Packing regular octagons in the plane group p2.
- How to express confidence in the best solution found?
- Run multiple simulations and compute an interval estimate.





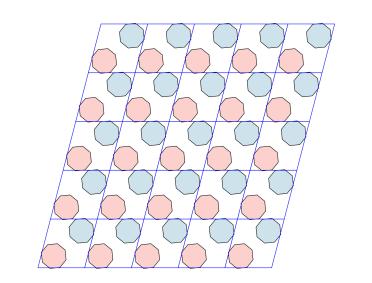


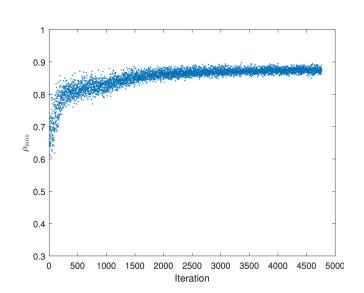
Stochastic optimisation problems

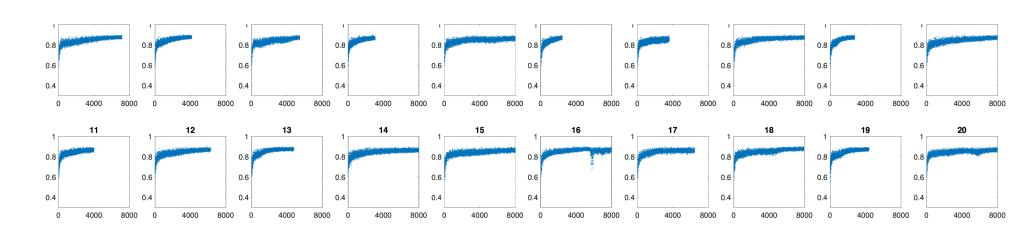
- Uses the tools of probability theory and mathematical statistics.
- Situations where the optimum is unknown.

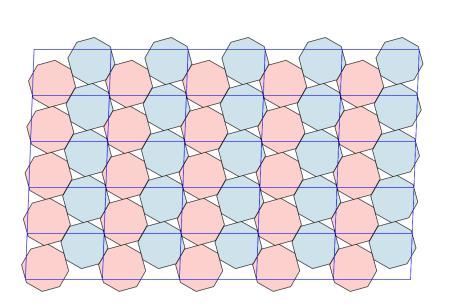
- Example: Packing regular octagons in the plane group p2.
- How to express confidence in the best solution found?
- Run multiple simulations and compute an interval estimate.
- Hodges-Lehmann estimator of the pseudomedian of 20 runs

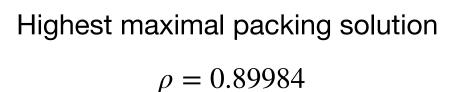
$$\hat{m} = 0.8970032$$

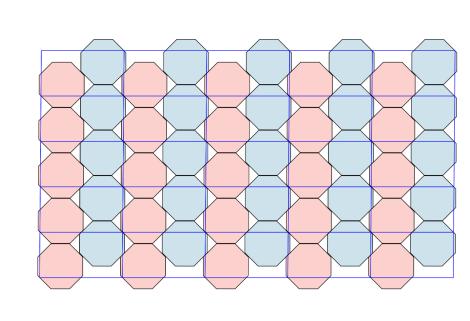












Lowest maximal packing solution

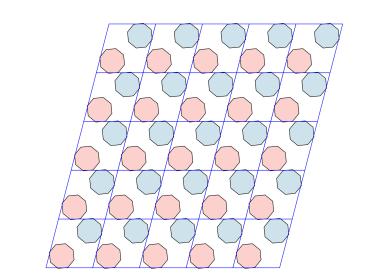
$$\rho = 0.89336$$

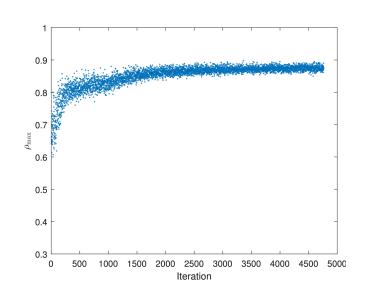
- Stochastic optimisation problems
 - Uses the tools of probability theory and mathematical statistics.
 - Situations where the optimum is unknown.

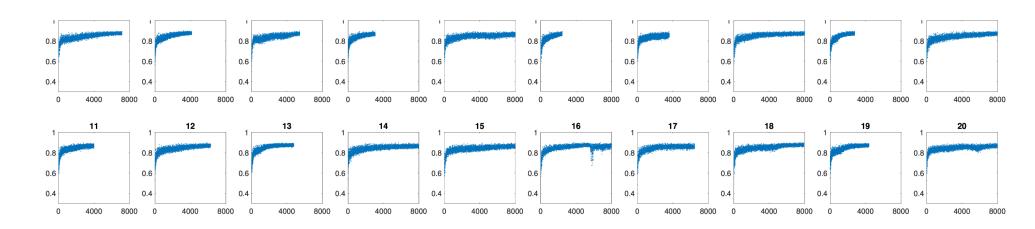
- Example: Packing regular octagons in the plane group p2.
- How to express confidence in the best solution found?
- Run multiple simulations and compute an interval estimate.
- Hodges-Lehmann estimator of the pseudomedian of 20 runs

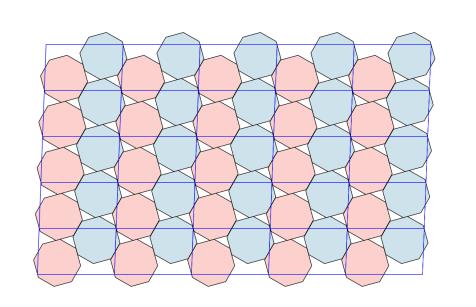
$$\hat{m} = 0.8970032$$

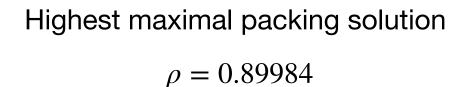
• 95% confidence interval based on Wilcoxon's signed rank test (0.8959246,0.8980686)

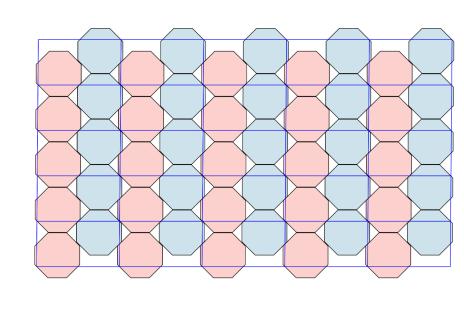












Lowest maximal packing solution

$$\rho = 0.89336$$

The universal phrase in global optimisation literature:

"Repeat until convergence."

The universal phrase in global optimisation literature:

"Repeat until convergence."

Simulated annealing example

• The universal phrase in global optimisation literature:

"Repeat until convergence."

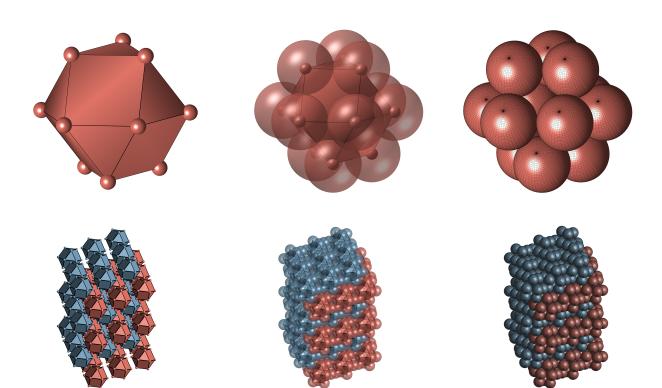
- Simulated annealing example
 - Converge in probability to the set of globally optimal solutions

$$\lim_{k \to \infty} P(X_k \in S_{\min}) = 1$$

- The universal phrase in global optimisation literature:
 - "Repeat until convergence."
- Simulated annealing example
 - Converge in probability to the set of globally optimal solutions

$$\lim_{k \to \infty} P(X_k \in S_{\min}) = 1$$

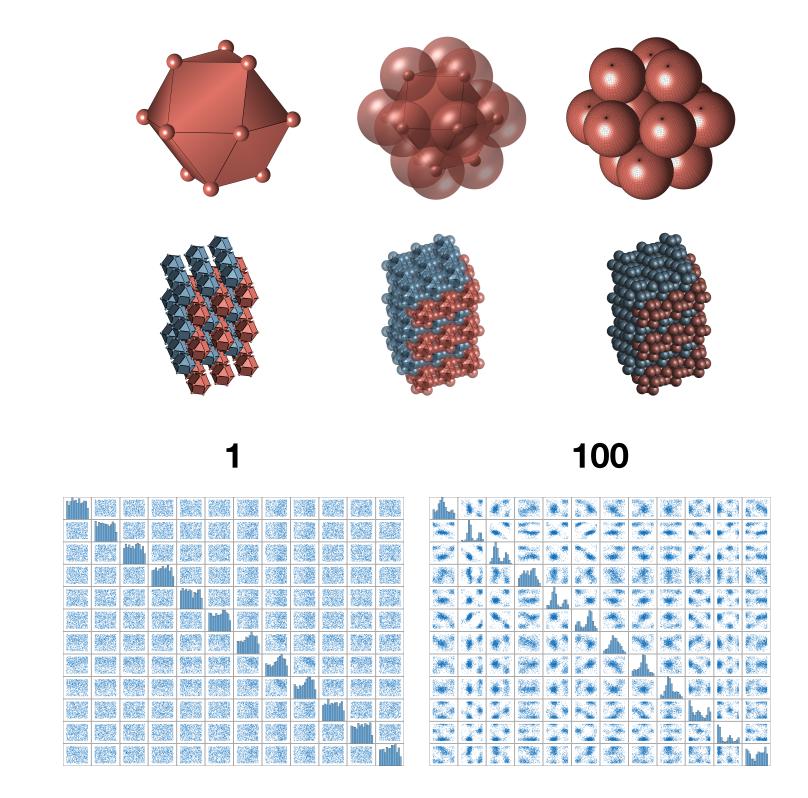
We don't know when it happens. It might take years.



- The universal phrase in global optimisation literature:
 - "Repeat until convergence."
- Simulated annealing example
 - Converge in probability to the set of globally optimal solutions

$$\lim_{k \to \infty} P(X_k \in S_{\min}) = 1$$

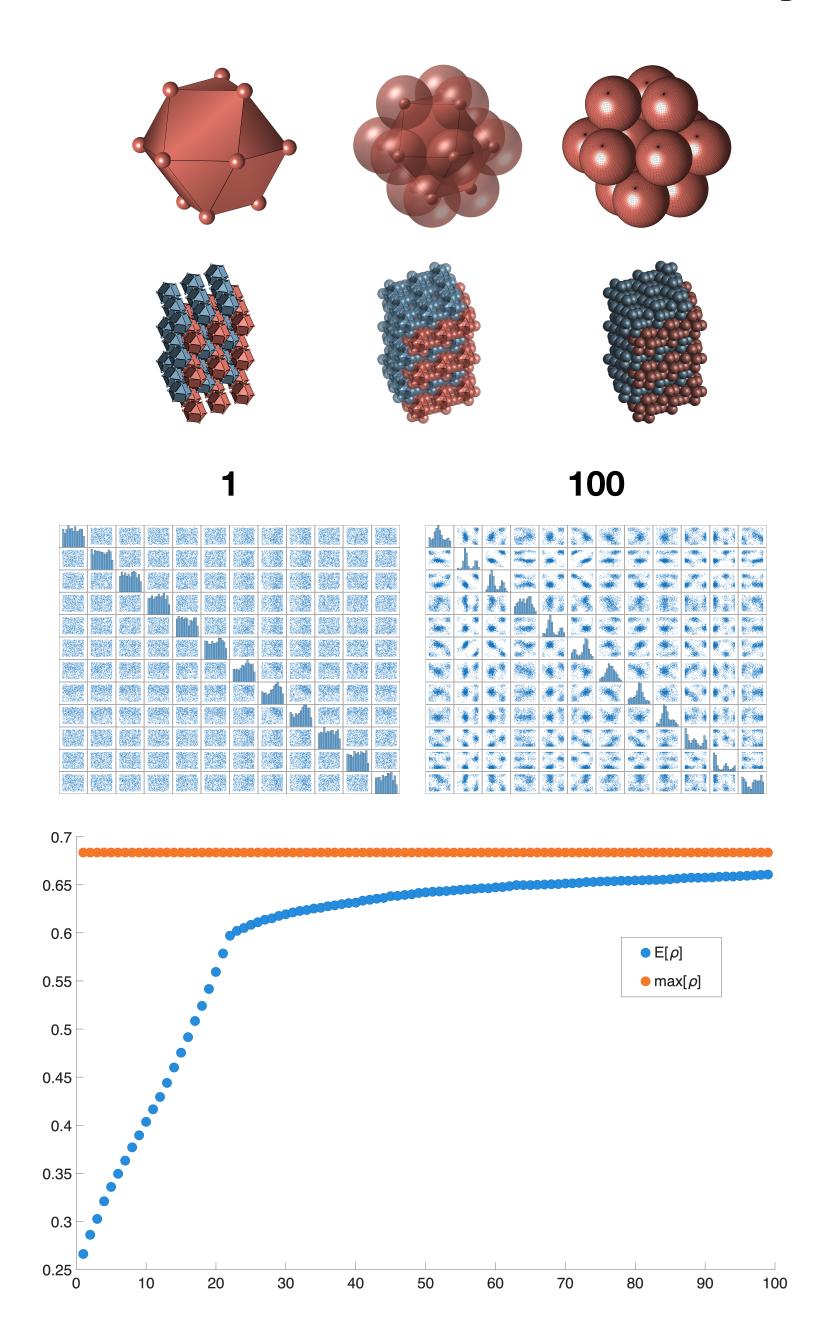
We don't know when it happens. It might take years.



- The universal phrase in global optimisation literature:
 - "Repeat until convergence."
- Simulated annealing example
 - Converge in probability to the set of globally optimal solutions

$$\lim_{k \to \infty} P(X_k \in S_{\min}) = 1$$

We don't know when it happens. It might take years.

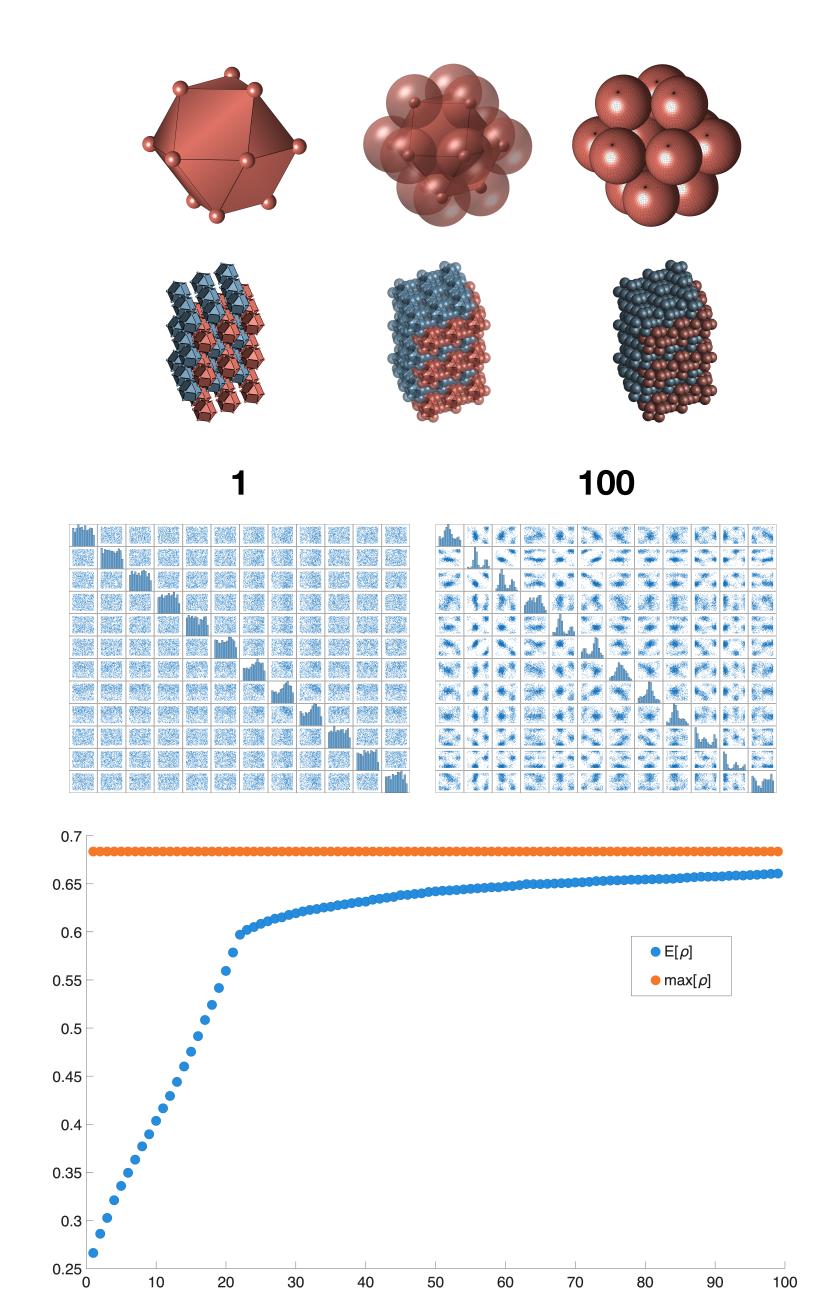


- The universal phrase in global optimisation literature:
 - "Repeat until convergence."
- Simulated annealing example
 - Converge in probability to the set of globally optimal solutions

$$\lim_{k \to \infty} P(X_k \in S_{\min}) = 1$$

- We don't know when it happens. It might take years.
- Estimate optimality gaps

$$\max[\rho] - E[\rho]$$



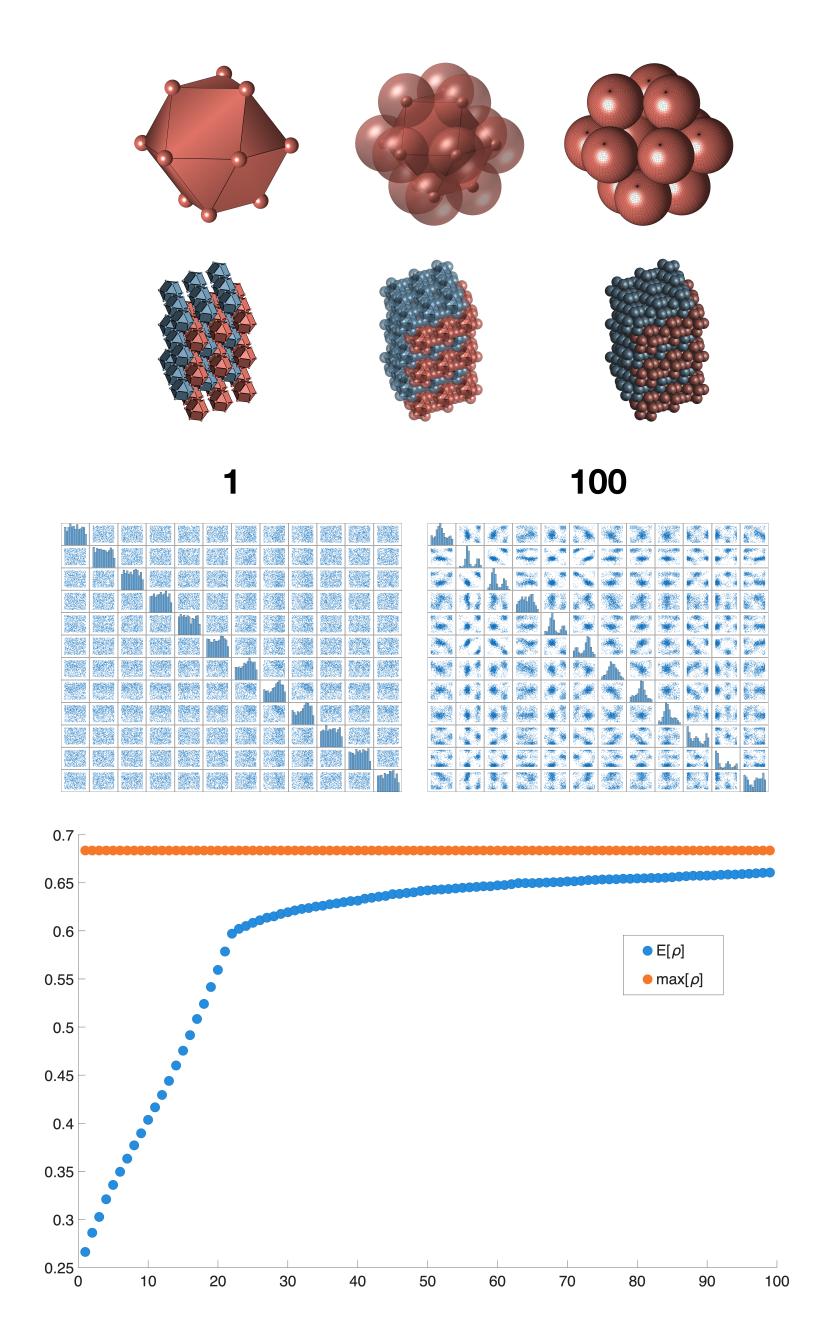
- The universal phrase in global optimisation literature:
 - "Repeat until convergence."
- Simulated annealing example
 - Converge in probability to the set of globally optimal solutions

$$\lim_{k \to \infty} P(X_k \in S_{\min}) = 1$$

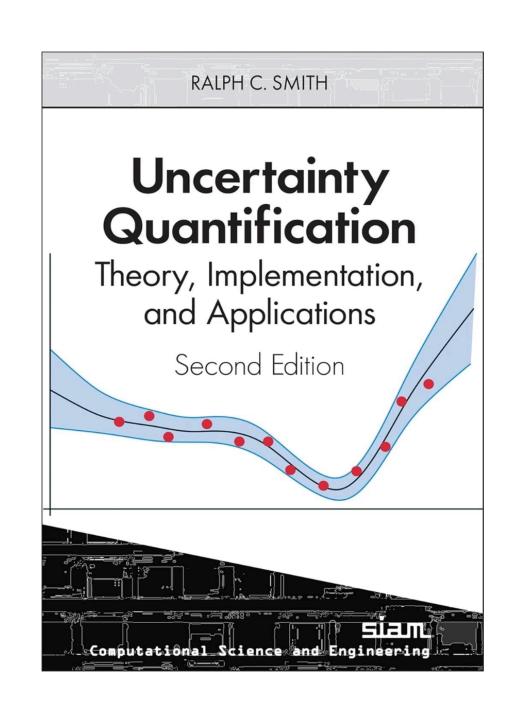
- We don't know when it happens. It might take years.
- Estimate optimality gaps

$$max[\rho] - E[\rho]$$

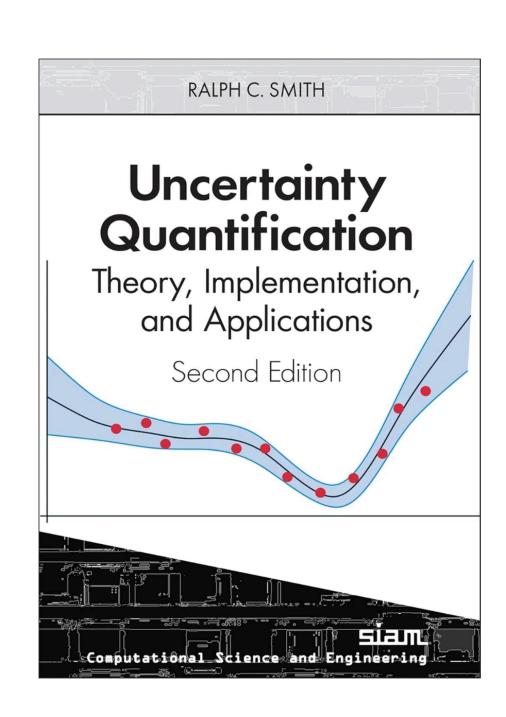
• Stopping Criterion: stop when the optimality gap falls below 0.1%



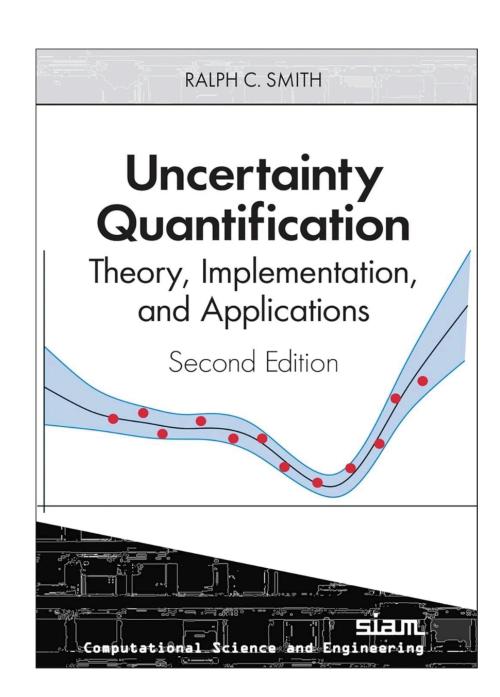
Objective of predictive science



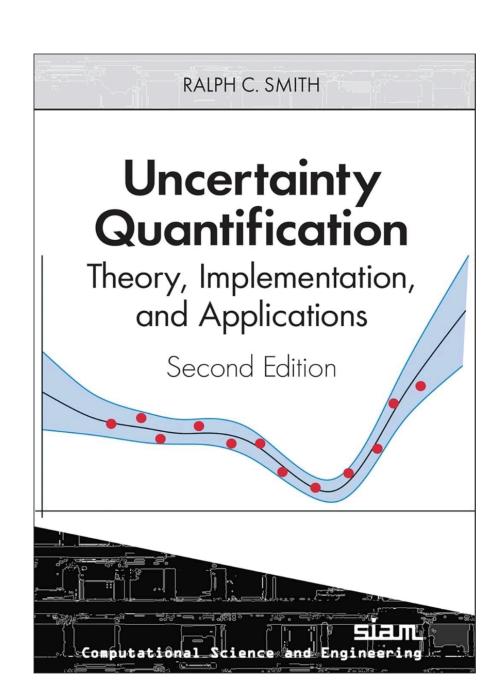
- Objective of predictive science
 - is to use models, simulation codes, and experiments to predict system responses with quantified and reduced uncertainties



- Objective of predictive science
 - is to use models, simulation codes, and experiments to predict system responses with quantified and reduced uncertainties
- Experimental Uncertainties and Limitations
 - "Experimental results are believed by everyone, except for the person who ran the experiment"

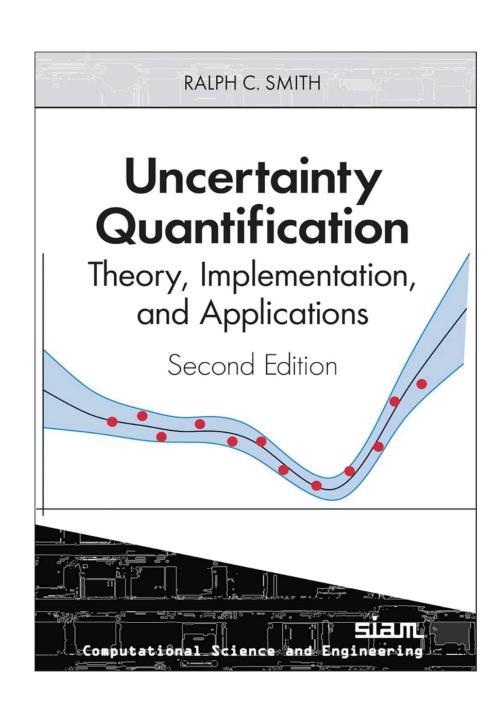


- Objective of predictive science
 - is to use models, simulation codes, and experiments to predict system responses with quantified and reduced uncertainties
- Experimental Uncertainties and Limitations
 - "Experimental results are believed by everyone, except for the person who ran the experiment"
- Numerical Errors and Uncertainties
 - "Computational results are believed by no one, except the person who wrote the code."



- Objective of predictive science
 - is to use models, simulation codes, and experiments to predict system responses with quantified and reduced uncertainties
- Experimental Uncertainties and Limitations
 - "Experimental results are believed by everyone, except for the person who ran the experiment"
- Numerical Errors and Uncertainties
 - "Computational results are believed by no one, except the person who wrote the code."
- Model Discrepancy

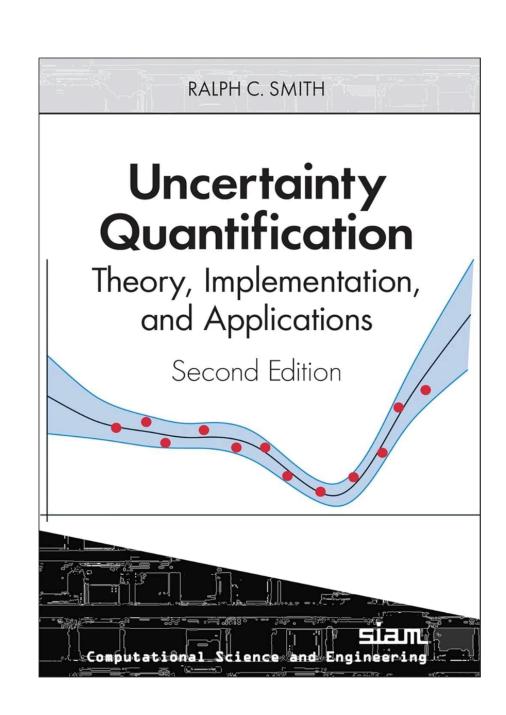
"Essentially, all models are wrong, but some are useful," G.E.P. Box



- Objective of predictive science
 - is to use models, simulation codes, and experiments to predict system responses with quantified and reduced uncertainties
- Experimental Uncertainties and Limitations
 - "Experimental results are believed by everyone, except for the person who ran the experiment"
- Numerical Errors and Uncertainties
 - "Computational results are believed by no one, except the person who wrote the code."
- Model Discrepancy

"Essentially, all models are wrong, but some are useful," G.E.P. Box

$$\begin{array}{ll} \textbf{.} \mbox{ Model of i-th observation:} & y_i = \xi(x_i) + \epsilon_i \\ \xi(x_i) = \eta(x_i,\theta) + \delta(x_i) \\ & \xi(x_i) & - \mbox{ true value of the physical system at } x_i \\ & \eta(x_i,\theta) & - \mbox{ value of the simulator at } x_i \\ & \delta(x_i) & - \mbox{ model discrepancy at } x_i \end{array}$$

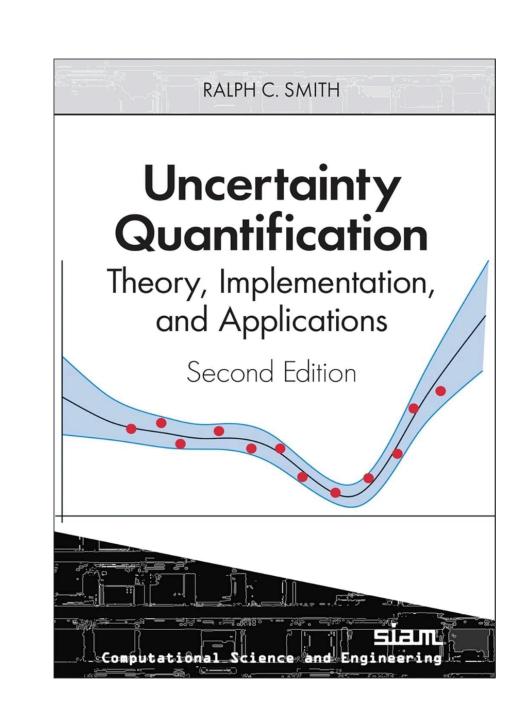


- Objective of predictive science
 - is to use models, simulation codes, and experiments to predict system responses with quantified and reduced uncertainties
- Experimental Uncertainties and Limitations
 - "Experimental results are believed by everyone, except for the person who ran the experiment"
- Numerical Errors and Uncertainties
 - "Computational results are believed by no one, except the person who wrote the code."
- Model Discrepancy

"Essentially, all models are wrong, but some are useful," G.E.P. Box

$$\begin{array}{ll} \textbf{.} \ \, \text{Model of i-th observation:} & y_i = \xi(x_i) + \epsilon_i \\ \xi(x_i) = \eta(x_i,\theta) + \delta(x_i) \\ & \xi(x_i) & \text{-true value of the physical system at } x_i \\ & \eta(x_i,\theta) & \text{-value of the simulator at } x_i \\ & \delta(x_i) & \text{-model discrepancy at } x_i \end{array}$$

• When **extrapolating** to contexts outside those for which we have observations of the physical system, it is essential to impose **strict prior information** on the permissible function space used to construct $\delta(x_i)$.



The Leverhulme Research Centre for Functional Materials Design

THANK YOU

Imperial College London

