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LLLM Leaderboard

This LLM leaderboard displays the latest public benchmark performance for SOTA model versions released after
April 2024. The data comes from model providers as well as independently run evaluations by Vellum or the open-
source community. We feature results from non-saturated benchmarks, excluding outdated benchmarks (e.g.

MMLU). If you want to evaluate these models on your use-cases, try Vellum Evals.

Top models per tasks

Best in Reasoning (GPQA Diamond) & Best in High School Math (AIME 2025) (O
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Are You Confident?

Best in Agentic Coding (SWE Bench) ®




Are You Confident?

write me a script visualizing an icosahedron in matlab

Thought for 39s >
Here's a compact, modern MATLAB script that builds an icosahedron from first principles (golden-ratio coordinates), then renders it nicely with

lighting, vertex markers, and a wire overlay. It uses patch with Faces/Vertices as documented by MathWorks. wvatworks

matlab @ Copy

% ICOSAHEDRON_VIS.m
% Visualize a regular icosahedron with shading, edges, and vertex markers.
% Cleve-style: short, clear, and vectorized.

% Geometry (golden rectangles)
phi = (1+sqrt(5))/2;

V=1[
@, 1, phi;
9, -1, phi;
el 1, _phi;
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Regular Icosahedron

write me a script visualizing an icosahedron in matlab

Thought for 39s >
Here's a compact, modern MATLAB script that builds an icosahedron from first principles (golden-ratio coordinates), then renders it nicely with

lighting, vertex markers, and a wire overlay. It uses patch with Faces/Vertices as documented by MathWorks. wvatworks

matlab @ Copy

% ICOSAHEDRON_VIS.m
% Visualize a regular icosahedron with shading, edges, and vertex markers.
% Cleve-style: short, clear, and vectorized.

% Geometry (golden rectangles)
phi = (1+sqrt(5))/2;

V=1[
0, 1, phi;
el _11 phi;
0l 11 _phi;

Q@ ¢ b P 4 Sources

nope you got something wrong

Thought for 33s >
You're right—my face list was off. Here's a rock-solid version that derives the faces automatically from the vertex set using convhulln, so the

connectivity is guaranteed correct for a regular icosahedron.

matlab @ Copy

% ICOSAHEDRON_VIS.m
% Visualize a regular icosahedron (faces from convex hull).
% Cleve-style: compact, clear, vectorized.

% Geometry: golden ratio vertices
phi = (1+sqrt(5))/2;
vV=_[...

0 1 phi;

@ -1 phi;

7] 1 —nhi-
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* Model errors, model discrepancies, or model inadequacies
» The famous quote of Georg E.P. Box

* Invented and developed the idea of robustness

- Had a key role in the integration of the classical and Bayesian schools of thought in Statistical Inference.
» Sources of Systematic Uncertainties:

- Simplifying model assumptions

- Missing physics

- Basic lack of knowledge

» Uncertainty Propagation

- Propagate systematic uncertainties through models to construct interval estimates

“Essentially, all models are wrong, but some are useful,*

G.E.P. Box and N.R. Draper, Empirical Model-Building and Response Surfaces,
John Wiley and Sons, New York, 1987.
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. - L o vol(O)

. Packing coefficient for periodic configurations: p =
vol(U)
- vol(U) = det(U) |
\/
~vol(0) = [ dV
0,
- O - subset of occupied by the van der Waals spheres 51+ 5 +5=5N5=5N5-5,n5+5N5N5;

. dV - natural volume form on R?
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Alternative: Monte-Carlo Estimation

. vol(0) = IlOdU

- 1, - indicator function over U

- Change of coordinates to an integral over the unit cube C

vol(0) = JIU_ladet(U)dC

vol(O)

o« P = vol(U) m—p- P = u 1-10(U)dC

» Uniform random variable on a unit cube C ~ X

p=E[ly0] =P (X € U0)

* Draw realisations o a random vector
Xl’ .o .XN Y C

#{X, e U0}

» Estimate the packing coefficient p
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Alternative: Monte-Carlo Estimation

+ N=100000 {X,e U"'0} = 76812

.5 =0.76812

» CCDC Mercury: 0.762159

» Which point estimate to trust?
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N
- X, - Bernoullitrial X = ZXi binomially distributed random variable
=1

* Central limit theorem:

« Confidence interval:

Random quantity is the interval.

* Interval estimate:

P

\

Z

. p(l=p)
P — Z

\/ﬁ
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Z
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Interval Estimate of the Packing Coefficient
Expected value: Np

Variance: Np (1 — p)

_F> N(0,1) Z converges in distribution to a normally distributed

random variable with a mean of 0 and a variance of 1

z - 1| — a quantile of the standard normal distribution

- A way to express confidence in the packing coefficient estimate p
* The tighter the interval, the higher the confidence in the estimate.

 Even better, sample until the size of this interval to be less than some constant ¢ with probability p
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Interval Estimate of the Packing Coefficient

N
- X; - Bernoullitrial X = ) X, binomially distributed random variable Expected value: Np
i=1

Variance: Np (1 — p)

A

(P —r) _F> N(0,1) Z converges In distribution to a normally distributed
(1-p) random variable with a mean of 0 and a variance of 1

* Central limit theorem: 1z

JN
Y.,
- Confidence interval: || »=2VN|_,1_,_,

V7 (1-5)

Random quantity is the interval.

\

/)

. - .| pa-p . pa-p)
Interval estimate: p-F \/ﬁp P+ 7 Z z - | — a quantile of the standard normal distribution

- A way to express confidence in the packing coefficient estimate p
* The tighter the interval, the higher the confidence in the estimate.

 Even better, sample until the size of this interval to be less than some constant ¢ with probability p

p(1-p)
A_ 2 f—
1p—pl < z\/ N ] D

p—pl<0.001 «-p=0.767827 N ~ 9,000,000
- N=100,000: 0.76812

« CCDC Mercury: 0.762159

P

- p = 0.999
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- Number of vertices: 12
- Radius of the spheres set to the van der Waals radius of carbon.
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- Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey ‘The Six-Cornered Snowflake’

- Proved to be correct by Thomas Hales in 2005

- p ~ 0.633833 e =0.00036 N = 9,370,000
- CCDC Mercury: 0.68767 e = 0.00415
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Hales, T. C. (2005). A proof of the Kepler conjecture. Annals of mathematics, 1065-1185.
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» Stochastic optimisation problems

- Uses the tools of probability theory and mathematical statistics.

- Situations where the optimum is unknown.

- Example: Packing regular octagons in the plane group p2.
* How to express confidence in the best solution found?

* Run multiple simulations and compute an interval estimate.

Optimisation Under Uncertainty
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Optimisation Under Uncertainty

» Stochastic optimisation problems
- Uses the tools of probability theory and mathematical statistics. b%%%%q e

- Situations where the optimum is unknown.
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- Example: Packing regular octagons in the plane group p2.

* How to express confidence in the best solution found?

* Run multiple simulations and compute an interval estimate.

* Hodges-L.ehmann estimator of the pseudomedian of 20 runs

m = 0.8970032
Ch b

S S N

Lowest maximal packing solution
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Highest maximal packing solution
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Optimisation Under Uncertainty

» Stochastic optimisation problems
- Uses the tools of probability theory and mathematical statistics. b%%%%q e

- Situations where the optimum is unknown.
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- Example: Packing regular octagons in the plane group p2.
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* Run multiple simulations and compute an interval estimate.

* Hodges-L.ehmann estimator of the pseudomedian of 20 runs

m = 0.8970032 RERNSNSNES
e
- 95% confidence interval based on Wilcoxon's signed rank test SO0 G=0
BEREATATAT
(0.8959246,0.8980686) e

Highest maximal packing solution Lowest maximal packing solution

p = 0.89984 p = 0.89336
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* The universal phrase in global optimisation literature:
“Repeat until convergence.”

» Simulated annealing example

- Converge in probability to the set of globally optimal solutions
lim P(X, €S, )=1

k— 00
- We don’t know when it happens. It might take years.
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- Estimate optimality gaps

max|p| — E[p]
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Optimisation Under Uncertainty

* The universal phrase in global optimisation literature:
“Repeat until convergence.”

» Simulated annealing example

- Converge in probability to the set of globally optimal solutions | : . B
lim PX, €S _.)=1 "

k— 00
- We don’t know when it happens. It might take years.

\) min

- Estimate optimality gaps

max|p| — E[p]
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» Stopping Criterion: stop when the optimality gap falls below 0.1% e
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Uncertainties In Predictive Estimation

* Objective of predictive science

RALPH C. SMITH

Uncertainty
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and Applications

Second Edition
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Uncertainties In Predictive Estimation

* Objective of predictive science

‘iIs to use models, simulation codes, and experiments to predict system responses with qguantified and reduced
uncertainties
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‘iIs to use models, simulation codes, and experiments to predict system responses with qguantified and reduced
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» Experimental Uncertainties and Limitations
“Experimental results are believed by everyone, except for the person who ran the experiment”
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Uncertainties In Predictive Estimation

* Objective of predictive science

‘iIs to use models, simulation codes, and experiments to predict system responses with qguantified and reduced
uncertainties

» Experimental Uncertainties and Limitations
“Experimental results are believed by everyone, except for the person who ran the experiment”

« Numerical Errors and Uncertainties

"Computational results are believed by no one, except the person who wrote the code.”

RALPH C. SMITH

Uncertainty
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Second Edition
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Uncertainties In Predictive Estimation

* Objective of predictive science

‘iIs to use models, simulation codes, and experiments to predict system responses with qguantified and reduced
uncertainties

» Experimental Uncertainties and Limitations
“Experimental results are believed by everyone, except for the person who ran the experiment”

* Numerical Errors and Uncertainties
"Computational results are believed by no one, except the person who wrote the code.”

* Model Discrepancy
“Essentially, all models are wrong, but some are useful,” G.E.P. Box

RALPH C. SMITH

Uncertainty
Quantification

Theory, Implementation,
and Applications

Second Edition

=T

‘| ] ] o
et | = o = -
e e e 2 5 it VES = 31 B Yoo L
TR T R T . e Lpeger o
A o §; 0 . oy
(! 1o Sladmk

5 T
g [ |
ering = %

A -“-Ciavp.‘t>1rtatiifﬁt_r[-a 1_Science- and:IEnginé

= a0 % ; — 3



Uncertainties In Predictive Estimation

* Objective of predictive science

‘iIs to use models, simulation codes, and experiments to predict system responses with qguantified and reduced
uncertainties

Experimental Uncertainties and Limitations

“Experimental results are believed by everyone, except for the person who ran the experiment”

Numerical Errors and Uncertainties
"Computational results are believed by no one, except the person who wrote the code.”

* Model Discrepancy
“Essentially, all models are wrong, but some are useful,” G.E.P. Box

RALPH C. SMITH

* Model of i-th observation: Y, = f (Xl-) + €;

c(x) = n(x;, 0) + o(x;) Uncertainty
Quantification
5 (Xi) - true value of the physical system at x; Theory, Implementation,
and Applications
" (xi, (9) - value of the simulator at x; Second Edition
5(Xl-) - model discrepancy at Xx;
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Uncertainties In Predictive Estimation

* Objective of predictive science

‘iIs to use models, simulation codes, and experiments to predict system responses with qguantified and reduced
uncertainties

Experimental Uncertainties and Limitations

“Experimental results are believed by everyone, except for the person who ran the experiment”

Numerical Errors and Uncertainties
"Computational results are believed by no one, except the person who wrote the code.”

* Model Discrepancy
“Essentially, all models are wrong, but some are useful,” G.E.P. Box

* Model of i-th observation: Yy, = f(xi) -+ €; RALPH C. SMITH
5(x;) = n(x;, 0) + o(x;) Uncertainty

Quantification

5 (xi) - true value of the physical system at x; Theory, Implementation,

and Applications

H (xi, (9) - value of the simulator at x; Second Edition

5(Xl-) - model discrepancy at Xx;

- When extrapolating to contexts outside those for which we have observations of the physical
system, it is essential to impose strict prior information on the permissible function space used to =i
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