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Densest Packings of Hexagonal Molecules in Two Dimensions

Chiral Interaction Energy Ground States https://milotorda.net/blog/
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The link between the crystallization problem and the sphere packing problem has
been highlighted by Heitmann and Radin in [129]. Indeed, if the interaction potential V'
1s given by

(1o ifO<r <1,
Vir)y=3-1 ifr =1, (20)
LO ifr > 1,

then the particles can be considered as hard spheres of radius 1/2. These spheres tend to
touch due to the condition V(1) = —1. The crystallization problem is thus equivalent to
the sphere packing, and one obtains that the solution i1s the hexagonal lattice in 2D, and
either FCC or the other sphere packing solutions in 3D.

Subsequent works aimed at generalizing this result to potentials which are similar
to (20), but are closer to physically realistic interactions. For instance, in [194], Radin
considered a potential satisfying (20) for r € [0, 1], which is non-decreasing for r > 1,
and tends to O fast enough as r — +4o00. In a famous article [229], Theil dealt with
smoother, more realistic potentials (which look like V), in dimension two. However, he
still used restrictive hypotheses on V. This work has been extended to dimension three
recently in [90], in which an additional three-body term 1s added, which favors particular
angles between interatomic bonds. A similar strategy has been used in dimension d = 2
in [78, 169, 170], where the optimal lattice may be a square lattice. One can therefore
consider that the problem 1s not completely understood in dimension two, and completely
open in dimension three.

» Taking into account monoatomic systems.

» We are considering molecular systems— multi-atomic systems.
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In this article we describe the crystallization conjecture. It states that, in appropriate
physical conditions, interacting particles always place themselves into periodic
configurations, breaking thereby the natural translation-invariance of the system.
This famous problem is still largely open. Mathematically, it amounts to studying the
minima of a real-valued function defined on R3*" where NNV is the number of
particles, which tends to infinity. We review the existing literature and mention
several related open problems, of which many have not been thoroughly studied.
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Divide and Conquer

- Start with simpler molecules

» Tetrahedral / octahedral molecules

- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.
« Optimal configuration of such molecules?

» Kissing / coordination number of a sphere S?is 12
* Every vertex of the GEOMAG structure belongs to exactly one tetrahedron
* Face-Center Cubic (FCC) close-packing of equal spheres

- Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey ‘The Six-Cornered Snowflake’
* Proved to be correct by Thomas Hales in 2005

Proved by Thomas Hales in 2005 Hales, T. C. (2005). A proof of the Kepler conjecture. Annals of mathematics, 1065-1185.
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Visualisation Style
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Visualization of the MCYPDE packing
maximization run for the space group
P2, (Left) Maximum packing density;
(middle) average packing density of N-
best packings at i — th iteration; (right)
distribution of the packing generation at
the iteration.
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§ M. Torda, J.Y. Goulermas, R. Pucek and V. Kurlin, Entropic Trust Region for Densest Crystallographic Symmetry Group Packings, SIAM Journal on Scientific Computing, (2023).
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Visualization of the MCYPDE packing
maximization run for the space group
P2, (Left) Maximum packing density;
(middle) average packing density of N-
best packings at i — th iteration; (right)
distribution of the packing generation at
the iteration.

* Non-linear non-convex optimisation problem

 Solve it via a modified version of the Entropic Trust Region Crystallographic Packing Algorithm

» Information-geometry based global search method

§ M. Torda, J.Y. Goulermas, R. Pucek and V. Kurlin, Entropic Trust Region for Densest Crystallographic Symmetry Group Packings, SIAM Journal on Scientific Computing, (2023).
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distribution of the packing generation at
the iteration.
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Reference Comparison Molecules in Common - : L
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§ M. Torda, J.Y. Goulermas, R. Pucek and V. Kurlin, Entropic Trust Region for Densest Crystallographic Symmetry Group Packings, SIAM Journal on Scientific Computing, (2023).
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Which space group to search first?

Symmetries of the tetrahedral and octahedral molecule packing models
1. Inversions — tetrahedra and octahedra of different colours are related by this isometry.
2.Lattice translations - tetrahedra with the same colour are related by this isometry.

- The octahedral configuration is a lattice packing.

The obvious choice is to start with space group P1
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Densest P1 Packing of Tetrahedral and Octahedral Molecules

N vol(K)
_ Packing density formula p ( #Z ~) =
P ( G) vol(U)
. Volume of the unit cell vol(U) = 2’
. Volume of the our tetrahedral molecule is vol(K) = ?71'2%
- Number of elements of factor group G/L where L is the lattice subgroup of G is N = 2

T
Packing density of tetrahedral and octahedral molecule packings p (%G) = —
' V18

- Which other space groups to search?

Densest packing configurations from the computational experiments
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- Lattice points are centres of a 2-fold rotational symmetry.

 Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.

- If we fold up this group by identifying the symmetry elements, we end up with
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p2 orbifold signature: 2 2 2 2 » There are at most three such non-isomorphic orbifold couplings in every space group.
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. P1|(2 2 2 2) symmetries of special projections are all 2 2 2 2

RRRESOSIMA

Conway, J. H., Burgiel, H., & Goodman-Strauss, C. (2016). The symmetries of things. CRC Press.
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1. M. Torda, J.Y. Goulermas, V. Kurlin and G. M. Day. (2022). Densest plane group packings of regular polygons. Physical Review E, 106(5), 054603.
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Closest-Packed Space Groups
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Densest P2, P2,/c, C2/c, P2,2,2, and Pbca Octahedral Molecule Packings
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Densest P1, P2,,P2,/c,C2/c,P2,2,2, and Pbca Cuboctahedral Molecule Packings
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- s the GEOMAG cuboctahedral molecule packing model the global packing density maximum?
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- How do we know it is the global maximum?

» By construction our cuboctahedral molecule model is a collection of equal spheres with
centres on the twelve vertices of a cuboctahedron,

| - What is the takeaway?
complementary packing

12 = T . . . . . .
P1|(e)] 068352.. % 15— with density — Vertices of a rhombic dodecahedron - Two levels of locally maximal close packing configurations:

1. Atomic - Locally maximal dense packings between
atoms of different molecules, where each atom touches
seven atoms from neighbouring molecules.
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- How do we know it is the global maximum?

» By construction our cuboctahedral molecule model is a collection of equal spheres with
centres on the twelve vertices of a cuboctahedron,

. - What is the takeaway?
complementary packing
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Pl[(e)] 068352.. % 15— with density — Vertices of a rhombic dodecahedron  Two levels of locally maximal close packing configurations:

1. Atomic - Locally maximal dense packings between
atoms of different molecules, where each atom touches
seven atoms from neighbouring molecules.

2. Molecular — Locally maximal dense packings between
molecules, where each molecule touches 14 surrounding
molecules, giving each molecule a molecular
coordination number of 14.
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» By construction our cuboctahedral molecule model is a collection of equal spheres with
centres on the twelve vertices of a cuboctahedron,
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1. Atomic - Locally maximal dense packings between
atoms of different molecules, where each atom touches
seven atoms from neighbouring molecules.

2. Molecular — Locally maximal dense packings between
molecules, where each molecule touches 14 surrounding
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What Do the Space Groups P1, P2, P2,/c,C2/c, P2,2,2, and Pbca and Have in Common?

- Relatively low-symmetry subgroups of the space group Fm3m Cambridge Structural Database
1 January 2025
- Full symmetry of the face-centred cubic lattice CSD Space Group Statistics - Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is
fully defined. Statistics for enantiomorphous space groups are as reported in the CSD.

¢ 48 elem entS m Od u |O Iatt | Ce tranS I atlo nS 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt

non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space
- Maximum of 8 for P1, P2, P2,/c,C2/c ,P2,2,2, and Pbca

groups.

Rank SG No. Space Group No. in CSD % of CSD

. . 1 14 P21/c 461,012 33.9
» Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025 g 2l P4 342,500 252
4 19 P212121 94,716 7.0

5 4 P21 70,852 5.2

6 61 Pbca 43,301 3.2

7 33 Pna21 18,451 1.4

8 9 Cc 14,143 1.0

9 1 P1 13,692 1.0

10 62 Pnma 13,434 1.0

11 5 (072 11,764 0.9




What Do the Space Groups P1, P2, P2,/c,C2/c, P2,2,2, and Pbca and Have in Common?

- Relatively low-symmetry subgroups of the space group F m3m

Cambridge Structural Database
1 January 2025

- Full symmetry of the face-centred cubic lattice CSD Space Group Statistics - Space Group Frequency Ordering
Space group frequency ranking for the 1,359,039 CSD structures for which the space group is
fully defined. Statistics for enantiomorphous space groups are as reported in the CSD.
1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt
non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space
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What Do the Space Groups P1, P2, P2,/c,C2/c, P2,2,2, and Pbca and Have in Common?

- Relatively low-symmetry subgroups of the space group F m3m

Cambridge Structural Database
1 January 2025

- Full symmetry of the face-centred cubic lattice CSD Space Group Statistics - Space Group Frequency Ordering
Space group frequency ranking for the 1,359,039 CSD structures for which the space group is
fully defined. Statistics for enantiomorphous space groups are as reported in the CSD.
1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt

* 48 elements modulo lattice translations

non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space

« Maximum of 8 for P1, P2, P2,/c,C2/c ,P2,2,2, and Pbca

groups.

Rank SG No. Space Group No. in CSD % of CSD

. . . 1 14 P21/c 461,012 33.9

» Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025 g 2l P4 342,500 252
4 19 P212121 94:716 7:0

- Approximately 82.7% of the total 1,359,039 structures : 511 Poes 43301 52
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What Do the Space Groups P1, P2, P2,/c,C2/c, P2,2,2, and Pbca and Have in Common?

- Relatively low-symmetry subgroups of the space group F m3m

Cambridge Structural Database
1 January 2025

- Full symmetry of the face-centred cubic lattice CSD Space Group Statistics - Space Group Frequency Ordering
Space group frequency ranking for the 1,359,039 CSD structures for which the space group is
fully defined. Statistics for enantiomorphous space groups are as reported in the CSD.
1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt
non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space
groups.

* 48 elements modulo lattice translations

« Maximum of 8 for P1, P2, P2,/c,C2/c ,P2,2,2, and Pbca

Rank SG No. Space Group No. in CSD % of CSD
. . . 1 14 P21/c 461,012 33.9
* Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025 : 2l P4 342,509 252
4 19 P212121 94:716 7:0
» Approximately 82.7% of the total 1,359,039 structures : 51 | Poca 301 33
7 33 Pna21 18,451 1.4
—_ 8 9 Cc 14,143 1.0
- P1, P2,, P2,/c, P2,2,2, and Pbca centrosymmetric ~ 75% of the CSD in total 9 - 13,692 1.0
1 s co 11,764 E
» This exactly the path A. |. Kitaigorodsky went:
Table 2
CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR QRGANIC
CRYSTALS
Molecular
symmetry 1 2 m 1 mm 2/m 222 mmm
in crystal
Closest-packed PI PI
space groups P2, none none P2,/¢c none none none none
P2,/c C2/c
Pca Pbca
Pna
P2,2,2,
Space groups C2/c  Pmec Fmm C2/m C222 Cmmm
of maximum none P2,2,2 Cmc none |(Pmma Pbaa F222 Fmmm
density Pnma Pmnn Cmca 1222 Immm
Pbcen Ccca

A. |. Kitaigorodsky, Molecular Crystals and Molecules, 1973
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- Relatively low-symmetry subgroups of the space group F m3m

Cambridge Structural Database
1 January 2025

- Full symmetry of the face-centred cubic lattice CSD Space Group Statistics - Space Group Frequency Ordering
Space group frequency ranking for the 1,359,039 CSD structures for which the space group is
fully defined. Statistics for enantiomorphous space groups are as reported in the CSD.
1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt
non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space

* 48 elements modulo lattice translations

_ groups.
- Maximum of 8 for P1, P2, P2,/c,C2/c ,P2,2,2, and Pbca
Rank SG No. Space Group No. in CSD % of CSD
. . . 1 14 P21/c 461,012 33.9
* Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025 : 2] b1 342,509 252
4 19 P212121 94:716 7:0
- Approximately 82.7% of the total 1,359,039 structures : o1 | Pica 301 32
7 33 Pna21 18,451 1.4
>y . 8 9 Cc 14,143 1.0
- P1, P2,, P2,/c, P2,2,2, and Pbca centrosymmetric ~ 75% of the CSD in total 9 B T 13,692 1.0
11 s ce 11,764 E
» This exactly the path A. |. Kitaigorodsky went:
» Using an abstract molecule model Table 2
CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR QORGANIC
CRYSTALS
Molecular
symmetry 1 2 m 1 mm 2/m 222 mmm
in crystal
Closest-packed PI PI
space groups P2, none none P2,/¢c none none none none
P2,/c C2/c
Pca Pbca
Pna
P2,2,2,
Sttt oo st et 2 Space groups C2/e  Pmec Fmm C2/m C222 Cmmm
of maximum none P2,2,2 Cmc none |{Pmma Pbaa F222 Fmmm
density Pnma Pmnn Cmca 1222 Immm
Pben Ccca

A. |. Kitaigorodsky, Molecular Crystals and Molecules, 1973

Fig. 20. Dense layer with symmetry p2.
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Space group frequency ranking for the 1,359,039 CSD structures for which the space group is
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non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space
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Rank SG No. Space Group No. in CSD % of CSD
: : : 1 14 P21/c 461,012 33.9
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* This exactly the path A. |. Kitaigorodsky went:
» Using an abstract molecule model Table 2
1 . analysed pOSSible plane group Symmetries Of ClOsest—paCked Iayers CLOSEST-PACKED SPACE GROUPS AND Spé(;s(i:fsups OF MAXIMUM DENSITY FOR ORGANIC
Molecular
symmetry 1 2 m 1 mm 2/m 222 mmm
in crystal
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Fig. 20. Dense layer with symmetry p2.



What Do the Space Groups P1, P2, P2,/c,C2/c, P2,2,2, and Pbca and Have in Common?

- Relatively low-symmetry subgroups of the space group F m3m

Cambridge Structural Database
1 January 2025

- Full symmetry of the face-centred cubic lattice CSD Space Group Statistics - Space Group Frequency Ordering
Space group frequency ranking for the 1,359,039 CSD structures for which the space group is
fully defined. Statistics for enantiomorphous space groups are as reported in the CSD.
1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt
non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space

* 48 elements modulo lattice translations

« Maximum of 8 for P1, P2, P2,/c,C2/c ,P2,2,2, and Pbca

groups.

Rank SG No. Space Group No. in CSD % of CSD
. . . 1 14 P21/c 461,012 33.9
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- Approximately 82.7% of the total 1,359,039 structures : o1 | Pica 301 32
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- P1, P2,, P2,/c, P2,2,2, and Pbca centrosymmetric ~ 75% of the CSD in total 9 B T 13,692 1.0
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