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Densest Packings of Hexagonal Molecules in Two Dimensions

Chiral Interaction Energy Ground States https://milotorda.net/blog/



Lattice Energy and Sphere Packing

• Taking into account monoatomic systems.
• We are considering molecular systems— multi-atomic systems.
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• Place 12 equal spheres on vertices of one cuboctahedron

•   Molecule a rigid collection of hard spheres

Cuboctahedral Model Molecule

• Question: What is its densest packing molecules with this geometry?

Possible  candidatePossible  candidate but is it the densest packing?
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Divide and Conquer
• Start with simpler molecules

• Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.

• Kissing / coordination number of a sphere  is 12S2

• Every vertex of the GEOMAG structure belongs to exactly one tetrahedron
• Face-Center Cubic (FCC) close-packing of equal spheres

• Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey ‘The Six-Cornered Snowflake’ 
• Proved to be correct by Thomas Hales in 2005

• Tetrahedral / octahedral molecules

Proved by Thomas Hales in 2005 Hales, T. C. (2005). A proof of the Kepler conjecture. Annals of mathematics, 1065-1185.

• Optimal configuration of such molecules?

https://en.wikipedia.org/wiki/Cuboctahedron#Related_polyhedra_and_honeycomb


Visualization of the MCYPDE packing 
maximization run for the space group 
P2₁ (Left) Maximum packing density; 
(middle) average packing density of N-
best packings at  iteration; (right) 
distribution of the packing generation at 
the  iteration.
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Visualisation Style 

§ M. Torda,  J. Y. Goulermas, R. Púček and V. Kurlin, Entropic Trust Region for Densest Crystallographic Symmetry Group Packings, SIAM Journal on Scientific Computing, (2023).
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• Solve it via a modified version of the Entropic Trust Region Crystallographic Packing Algorithm

• Non-linear non-convex optimisation problem

Fix the space group isomorphism class

• Information-geometry based global search method

Close-Packings of Volumetric Models of Molecules
Spheres with Van der Waals radii



Visualization of the MCYPDE packing 
maximization run for the space group 
P2₁ (Left) Maximum packing density; 
(middle) average packing density of N-
best packings at  iteration; (right) 
distribution of the packing generation at 
the  iteration.

i − th

x1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x2

x3

x4

x5
x6

x7

x8

x9
x10

x6x7

Packing MCYPDE in Space Group P2₁Molecule as a collection of 
Van der Waals spheres

Close-Packings of Volumetric Models of Molecules

§ M. Torda,  J. Y. Goulermas, R. Púček and V. Kurlin, Entropic Trust Region for Densest Crystallographic Symmetry Group Packings, SIAM Journal on Scientific Computing, (2023).
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Reference Comparison Molecules in Common ρ

Ground state Rank 1 30 out of 30 0.7584

Ground state Rank 2 8 out of 30 0.7514

Ground state Rank 3 10 out of 30 0.7510

Visualization of the packing match to the CSP lowest 
energy structure (Left) A single unit cell displayed in a 
space-filling representation, where colors indicate 
symmetry operations modulo lattice translations. (Middle 
and right) Overlay in a wireframe representation: the global 
energy minimum (blue) and the matching packing (red). 
(Middle) Asymmetric unit of the configuration; (right) a 15-
molecule cluster.
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Which space group to search first?

2.Lattice translations – tetrahedra with the same colour are related by this isometry.

1. Inversions – tetrahedra and octahedra of different colours are related by this isometry.
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Which space group to search first?

2.Lattice translations – tetrahedra with the same colour are related by this isometry.

1. Inversions – tetrahedra and octahedra of different colours are related by this isometry.

The obvious choice is to start with space group P1̄

• The octahedral configuration is a lattice packing.

Symmetries of the tetrahedral and octahedral molecule packing models
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Densest  Packing of Tetrahedral and Octahedral MoleculesP1̄
• Packing density formula  ρ (𝒦G) =

N vol(K)
vol(U)

• Volume of the our tetrahedral molecule is vol(K) =
16
3

π23
2

• Number of elements of factor group  where   is the lattice subgroup of   is G/L L G N = 2

• Volume of the unit cell vol(U) = 27

• Which other space groups to search?
Densest packing configurations from the computational experiments

• Packing density of tetrahedral and octahedral molecule packings ρ (𝒦G) =
π

18
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• Two levels of locally maximal close packing configurations:

1. Atomic – Locally maximal dense packings between 
atoms of different molecules, where each atom touches 
seven atoms from neighbouring molecules.

rhombic dodecahedral honeycomb dual honeycomb tetrahedral–octahedral honeycomb

https://en.wikipedia.org/wiki/Rhombic_dodecahedron#As_a_space-filling_polyhedron
https://en.wikipedia.org/wiki/Tetrahedral-octahedral_honeycomb


Global Cuboctahedral Molecule Packing Maximiser

 |  | P1̄ (2 2 2 2) 0.68352... ≈
12
13

π

18

• By construction our cuboctahedral molecule model is a collection of equal spheres with 
centres on the twelve vertices of a cuboctahedron,

• How do we know it is the global maximum?

 |  | P1 ( ∘ ) 0.68352... ≈
12
13

π

18

complementary packing 

with density 
1
13

π

18
Vertices of a rhombic dodecahedron

• What is the takeaway?
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• This exactly the path A. I. Kitaigorodsky went:

1. analysed possible plane group symmetries of closest-packed layers
2. estimated space groups for close packing of molecules by 
stacking of closest-packed layers

For molecules with tetrahedral symmetry , the closest packing is 
attainable in space group .

Td
P1̄

Td

P1̄

• Using an abstract molecule model
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