The Leverhulme Research Centre for Functional Materials Design

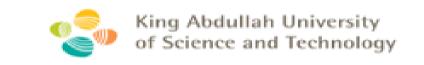
From Molecular Shape to Crystal Symmetry

Densest Packings of Radially Equilateral Molecules

Miloslav Torda

MACSMIN 2025

10 September 2025



The Leverhulme Research Centre for Functional Materials Design

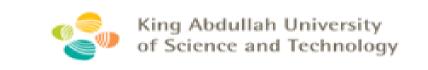
From Molecular Shape to Crystal Symmetry

Densest Packings of Hexagonal Molecules in Two Dimensions and Cuboctahedral Molecules in Three Dimensions

Miloslav Torda

MACSMIN 2025

10 September 2025



The Leverhulme Research Centre for Functional Materials Design

From Molecular Shape to Crystal Symmetry

Densest Packings of Cuboctahedral Molecules

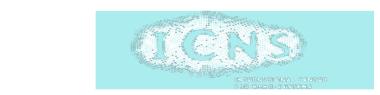
Miloslav Torda

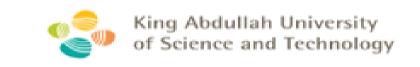
MACSMIN 2025

10 September 2025

Imperial College

London

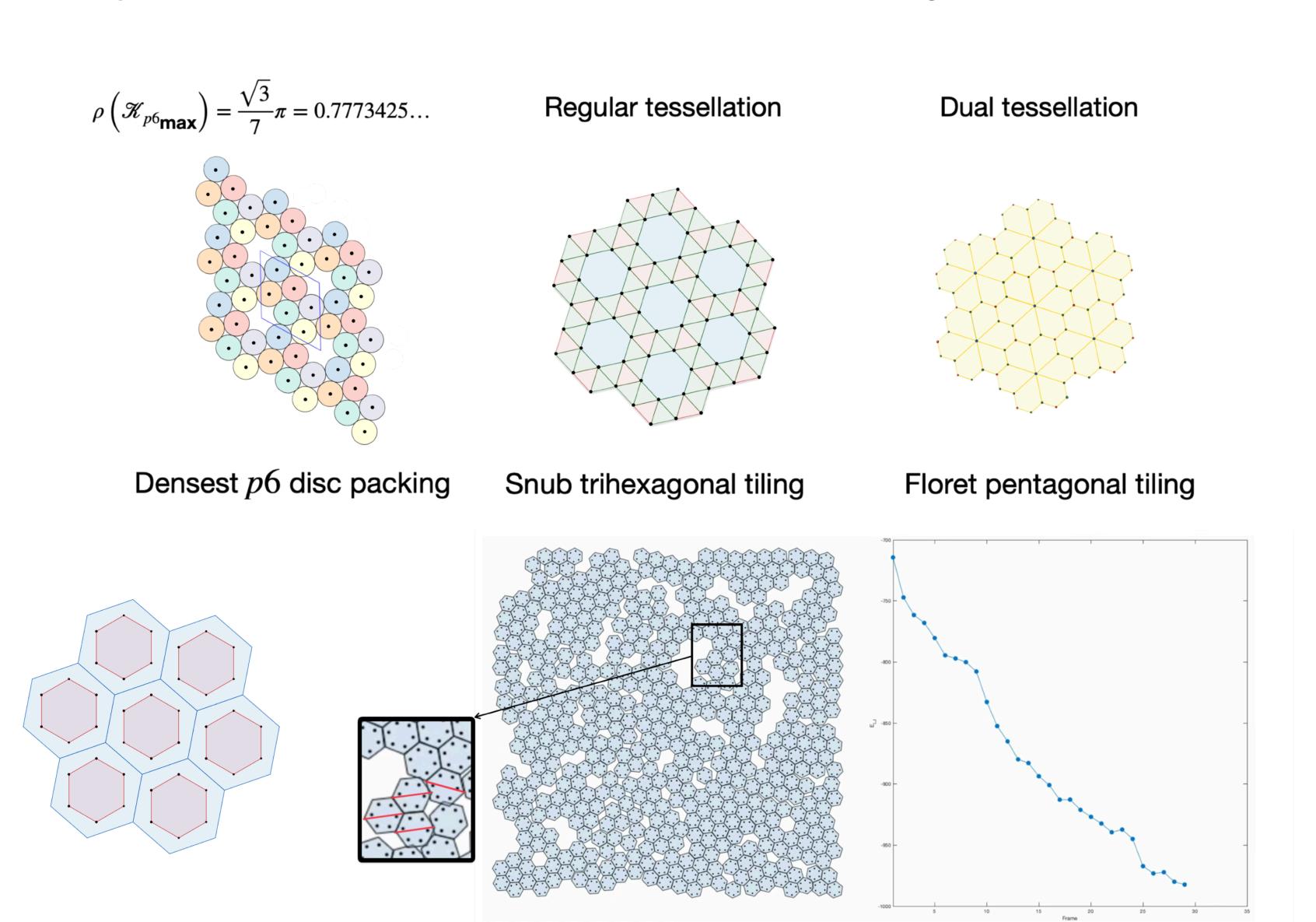




Densest Packings of Hexagonal Molecules in Two Dimensions

Chiral Interaction Energy Ground States

https://milotorda.net/blog/



The link between the crystallization problem and the sphere packing problem has been highlighted by Heitmann and Radin in [129]. Indeed, if the interaction potential V is given by

$$V(r) = \begin{cases} +\infty & \text{if } 0 \le r < 1, \\ -1 & \text{if } r = 1, \\ 0 & \text{if } r > 1, \end{cases}$$
 (20)

then the particles can be considered as hard spheres of radius 1/2. These spheres tend to touch due to the condition V(1) = -1. The crystallization problem is thus equivalent to the sphere packing, and one obtains that the solution is the hexagonal lattice in 2D, and either FCC or the other sphere packing solutions in 3D.

Subsequent works aimed at generalizing this result to potentials which are similar to (20), but are closer to physically realistic interactions. For instance, in [194], Radin considered a potential satisfying (20) for $r \in [0, 1]$, which is non-decreasing for $r \ge 1$, and tends to 0 fast enough as $r \to +\infty$. In a famous article [229], Theil dealt with smoother, more realistic potentials (which look like $V_{\rm LJ}$), in dimension two. However, he still used restrictive hypotheses on V. This work has been extended to dimension three recently in [90], in which an additional three-body term is added, which favors particular angles between interatomic bonds. A similar strategy has been used in dimension d = 2 in [78, 169, 170], where the optimal lattice may be a square lattice. One can therefore consider that the problem is not completely understood in dimension two, and completely open in dimension three.

- Taking into account monoatomic systems.
- We are considering molecular systems— multi-atomic systems.

Lattice Energy and Sphere Packing

JOURNALS » EMSS » VOL. 2, NO. 2 » PP. 255-306

The crystallization conjecture: a review

Xavier Blanc

Université Denis Diderot (Paris 7), France

Mathieu Lewin

Université de Cergy-Pontoise, France

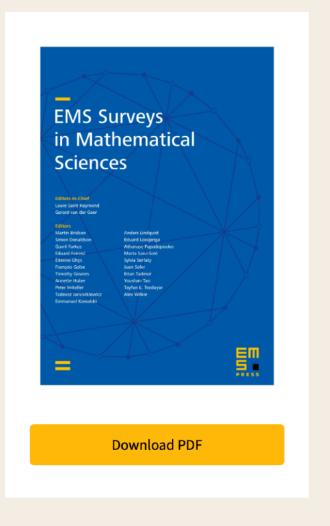
Abstract

In this article we describe the *crystallization conjecture*. It states that, in appropriate physical conditions, interacting particles always place themselves into periodic configurations, breaking thereby the natural translation-invariance of the system. This famous problem is still largely open. Mathematically, it amounts to studying the minima of a real-valued function defined on \mathbb{R}^{3N} where N is the number of particles, which tends to infinity. We review the existing literature and mention several related open problems, of which many have not been thoroughly studied.

Cite this article

Xavier Blanc, Mathieu Lewin, The crystallization conjecture: a review. EMS Surv. Math. Sci. 2 (2015), no. 2, pp. 255–306

DOI 10.4171/EMSS/13



Dates

Submitted 3 April 2015
Accepted 2 October 2015
Published 22 November 2015

Identifiers

DOI 10.4171/EMSS/13

Crystallization conjecture

Keywords

thermodynamic limit Epstein zeta function

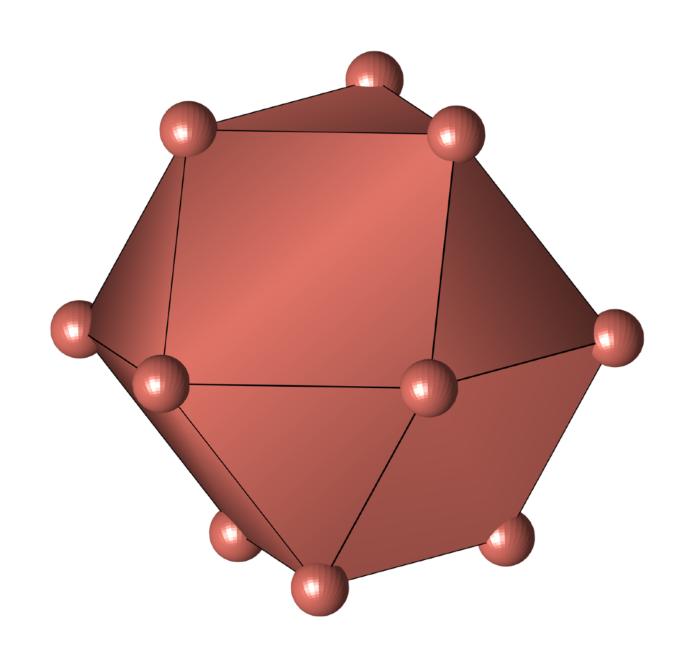
Wigner problem

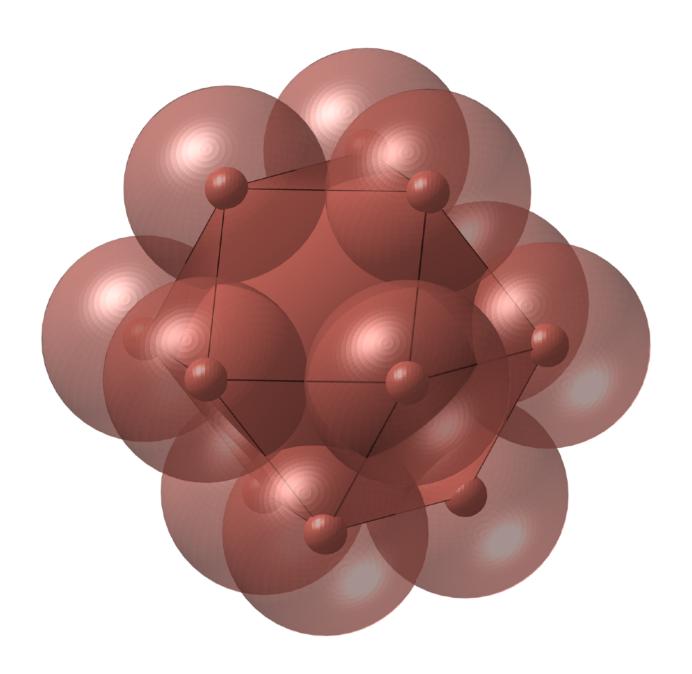
Mathematics Subject Classification

82-XX 11-XX 35-XX 49-XX

Cuboctahedral Molecule Model

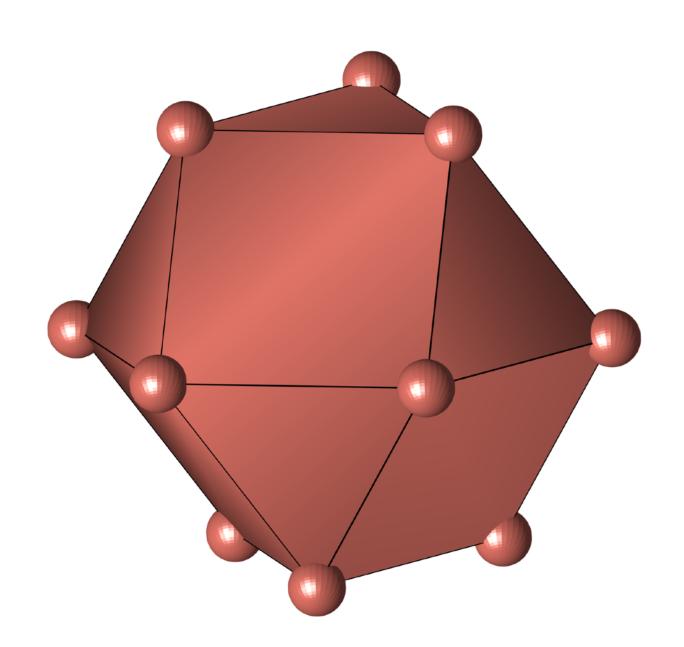
Molecule a rigid collection of hard spheres

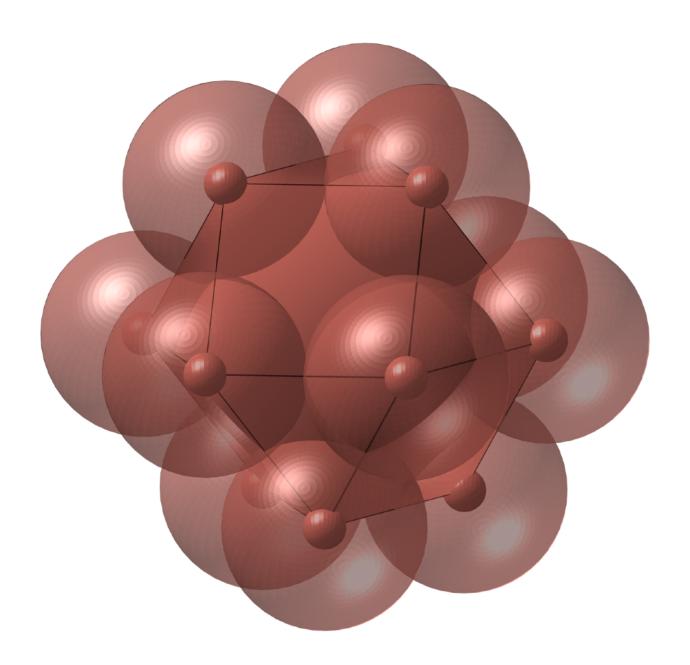




Cuboctahedral Molecule Model

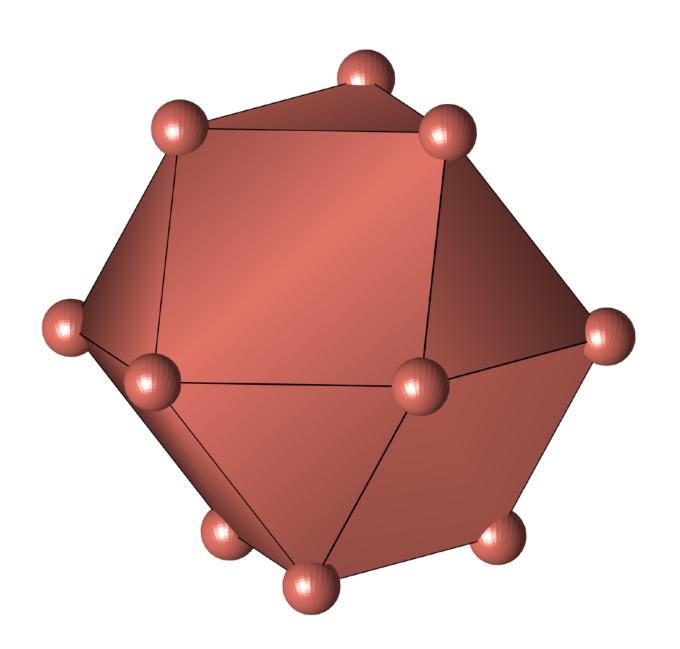
- Molecule a rigid collection of hard spheres
- Place 12 equal spheres on vertices of one cuboctahedron

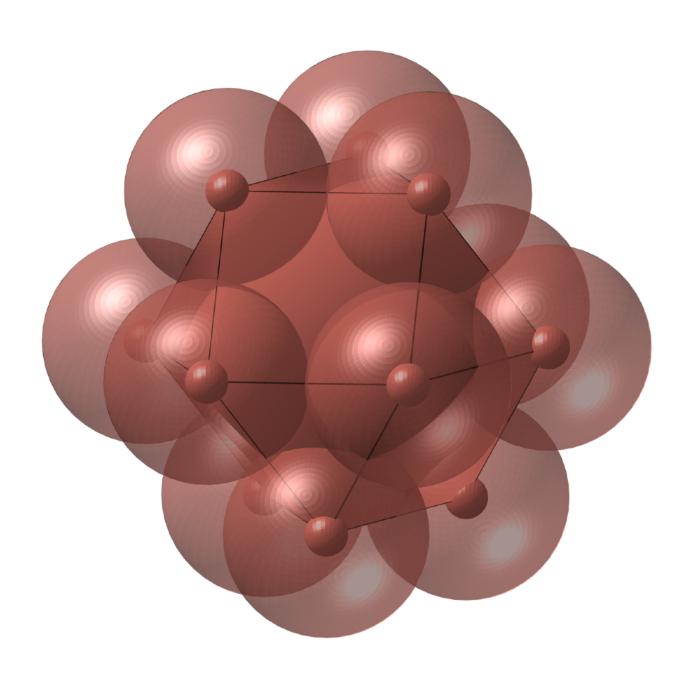




Cuboctahedral Model Molecule

- Molecule a rigid collection of hard spheres
- Place 12 equal spheres on vertices of one cuboctahedron
- Question: What is its densest packing molecules with this geometry?

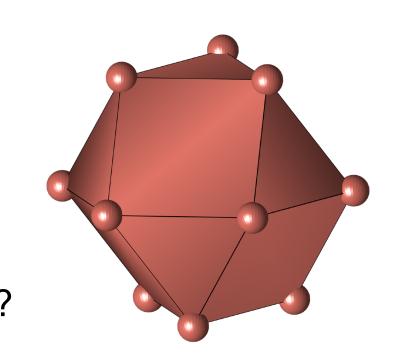


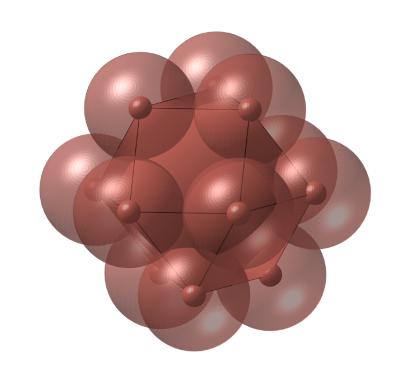


Cuboctahedral Model Molecule

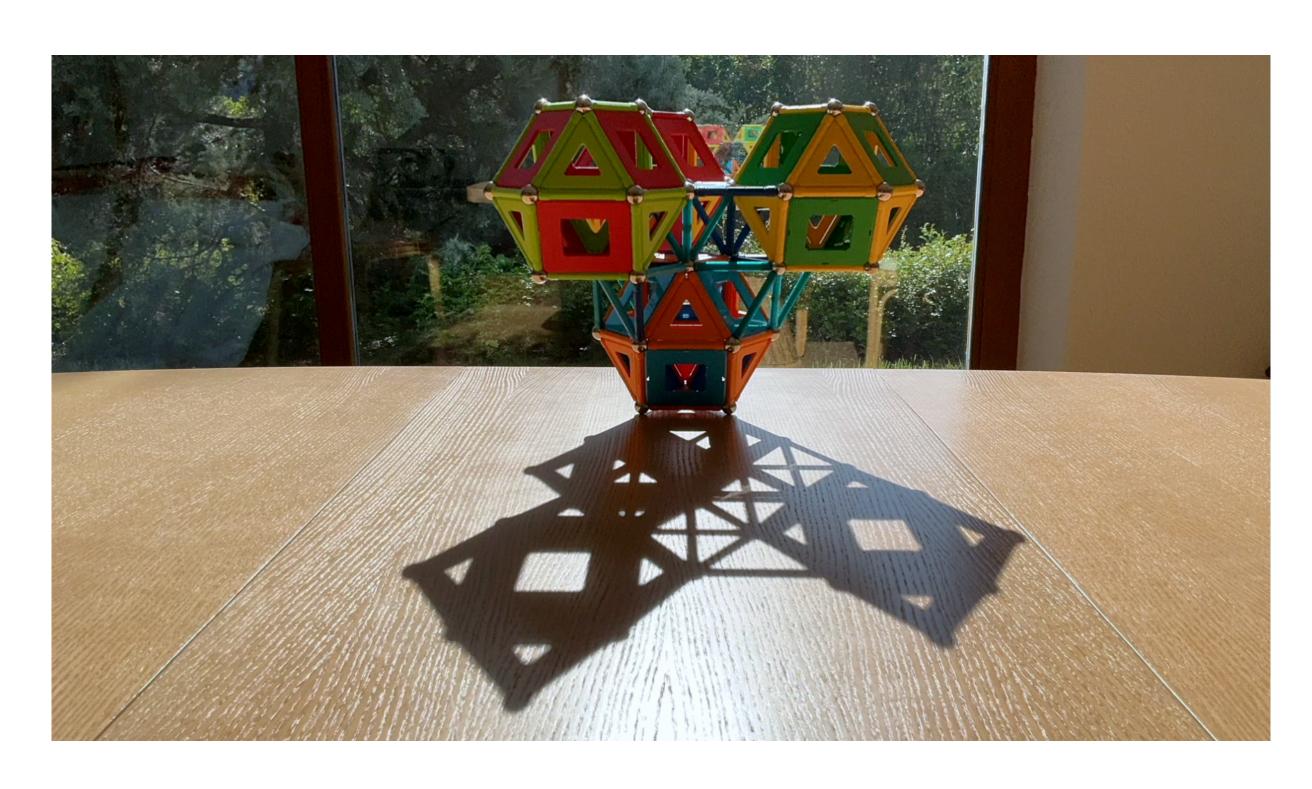
- Molecule a rigid collection of hard spheres
- Place 12 equal spheres on vertices of one cuboctahedron

Question: What is its densest packing molecules with this geometry?





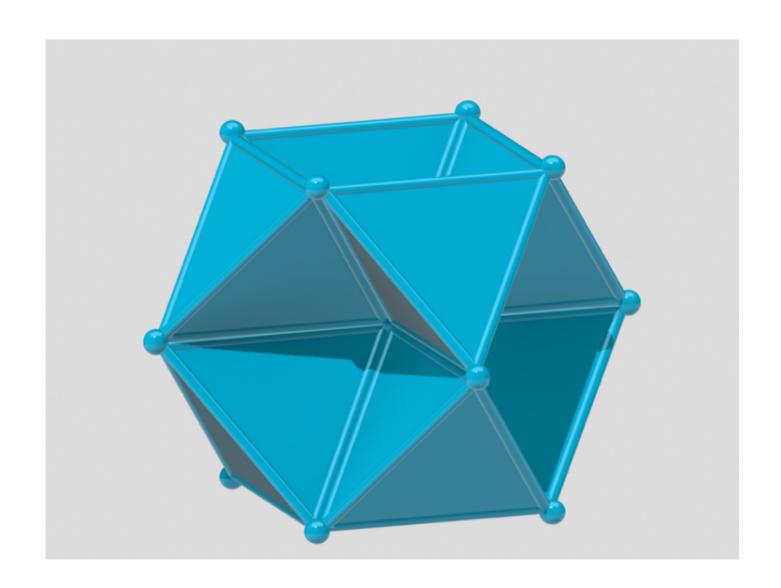
Possible candidate but is it the densest packing?



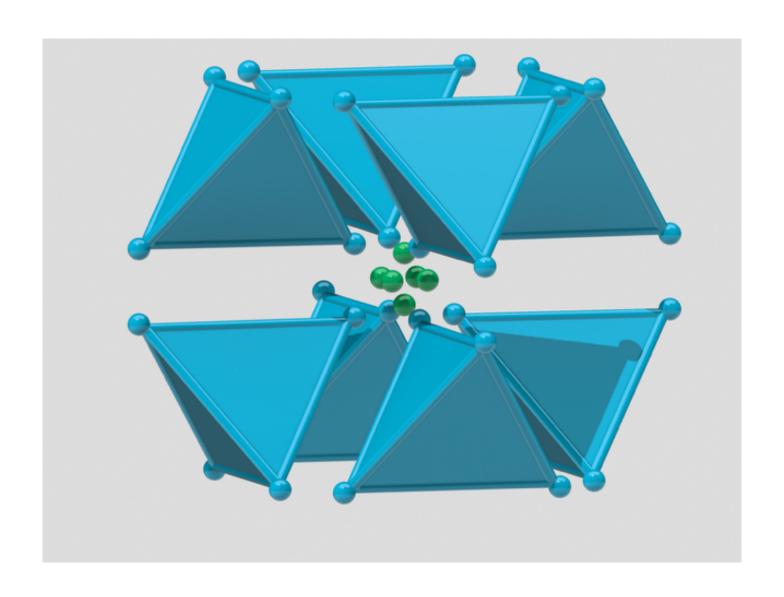
Start with simpler molecules

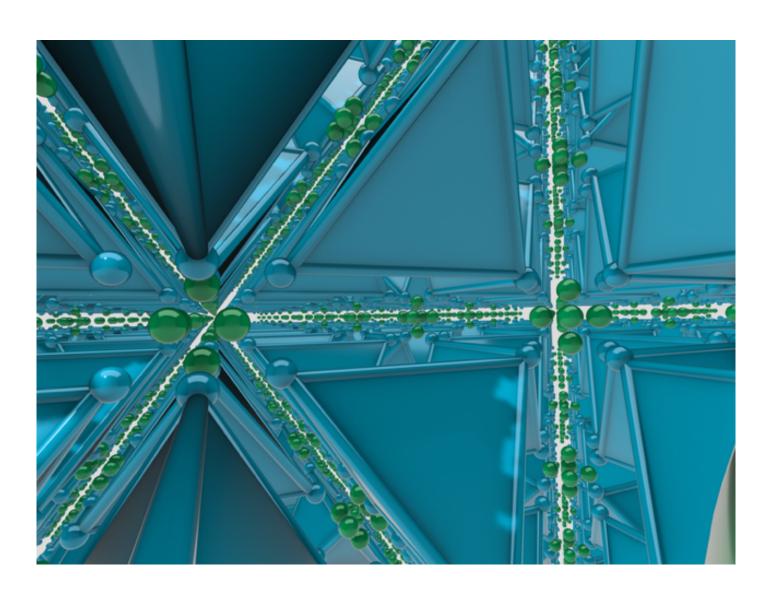
- Start with simpler molecules
- Tetrahedral / octahedral molecules

Octatetrahedron



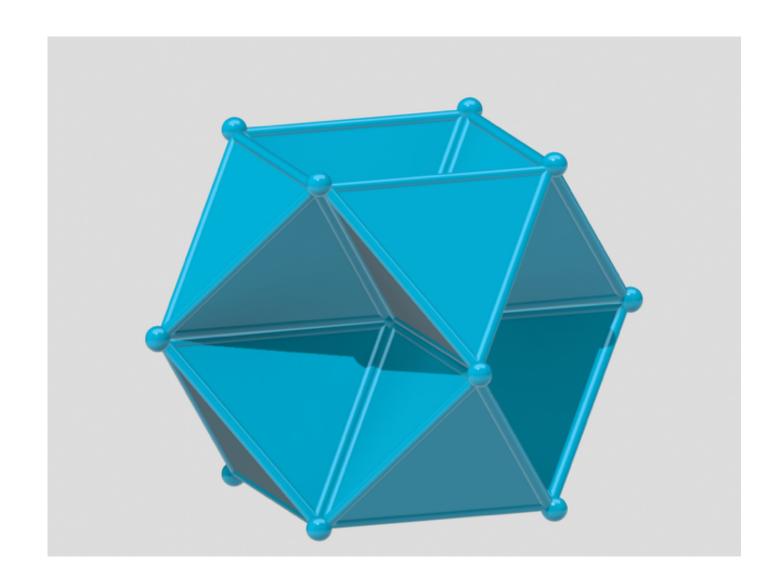
Tetrahedral framework- tetrahedra builds blocks and octahedral hollows



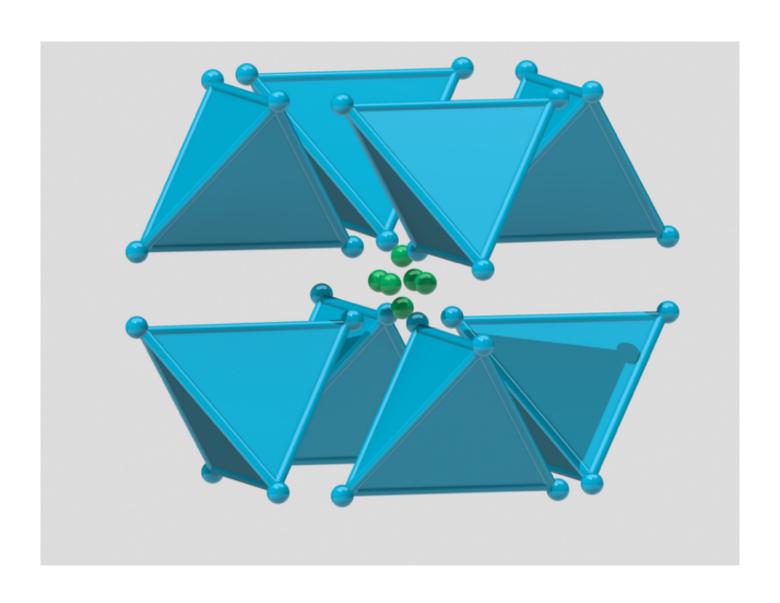


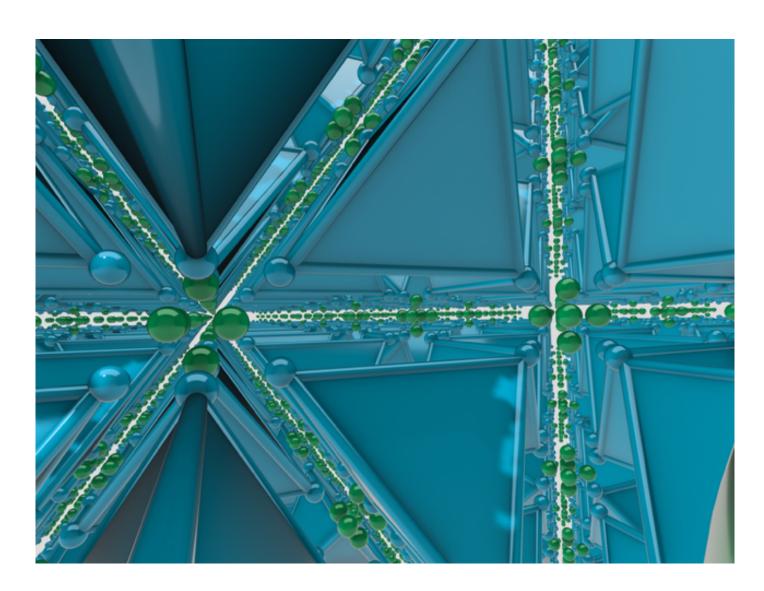
- Start with simpler molecules
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.

Octatetrahedron



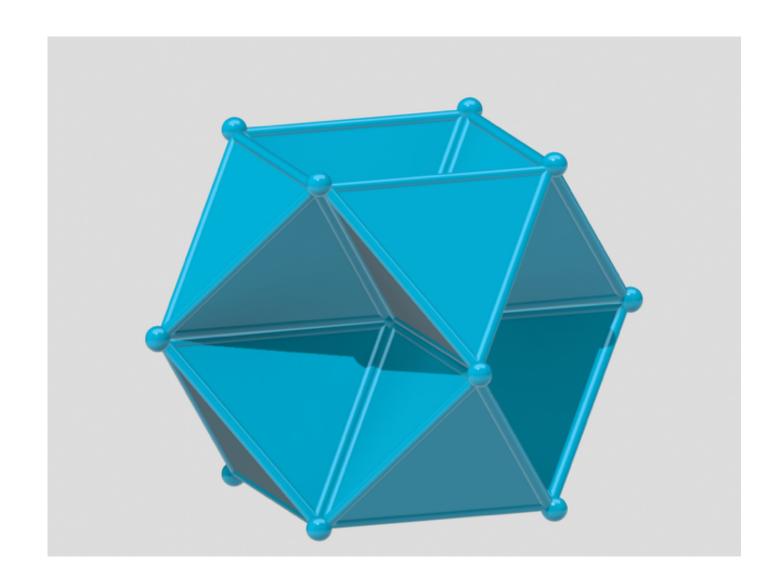
Tetrahedral framework- tetrahedra builds blocks and octahedral hollows



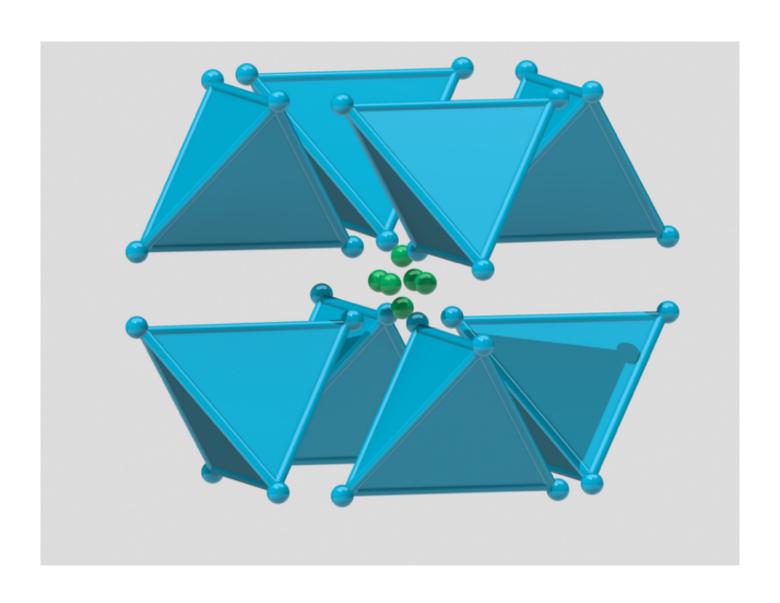


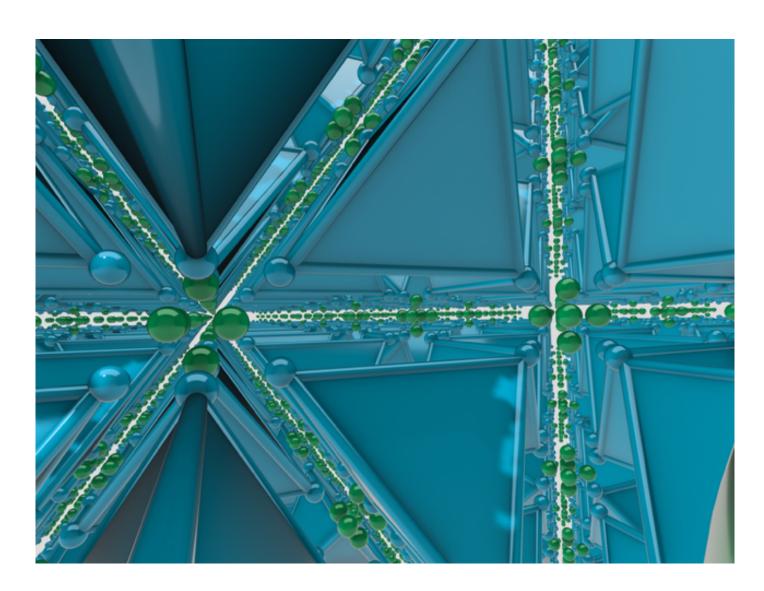
- Start with simpler molecules
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.

Octatetrahedron

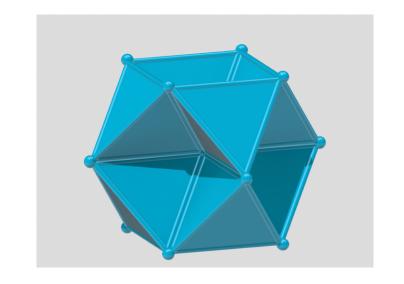


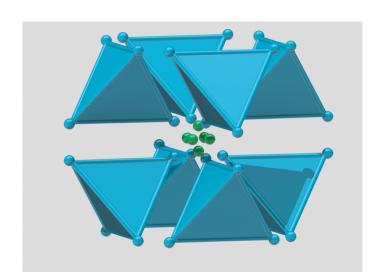
Tetrahedral framework- tetrahedra builds blocks and octahedral hollows

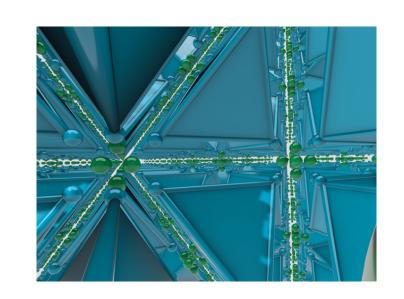


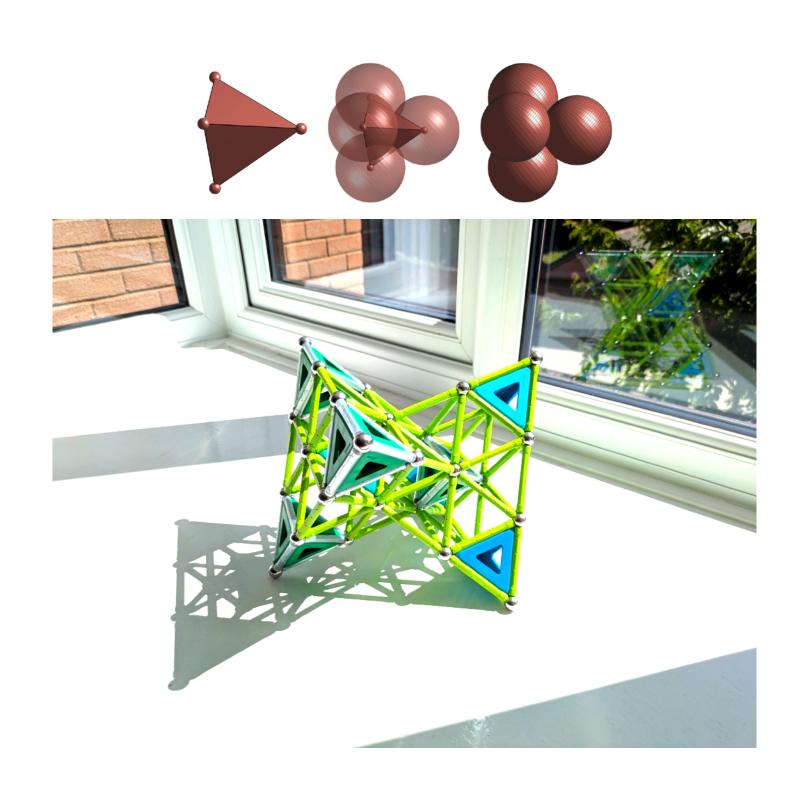


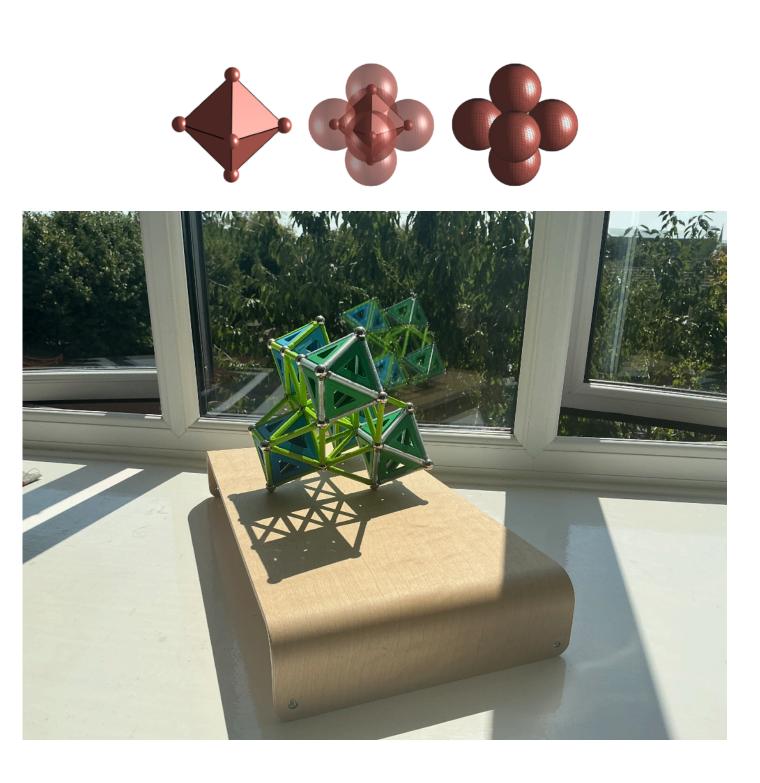
- Start with simpler molecules
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.
- Optimal configuration of such molecules?



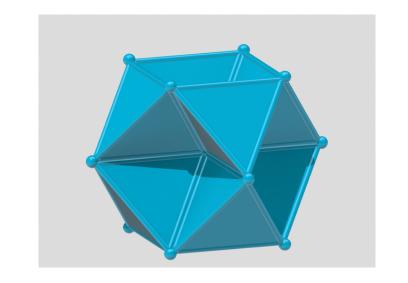


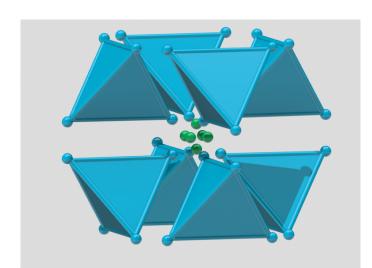


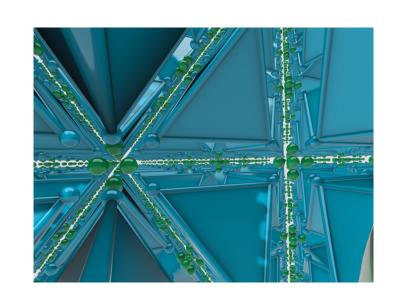


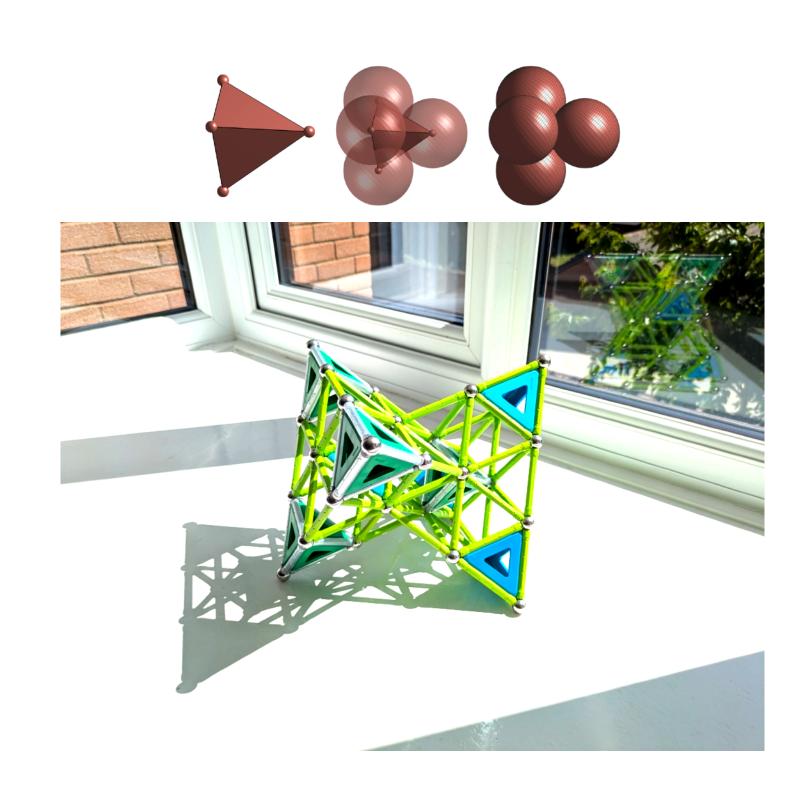


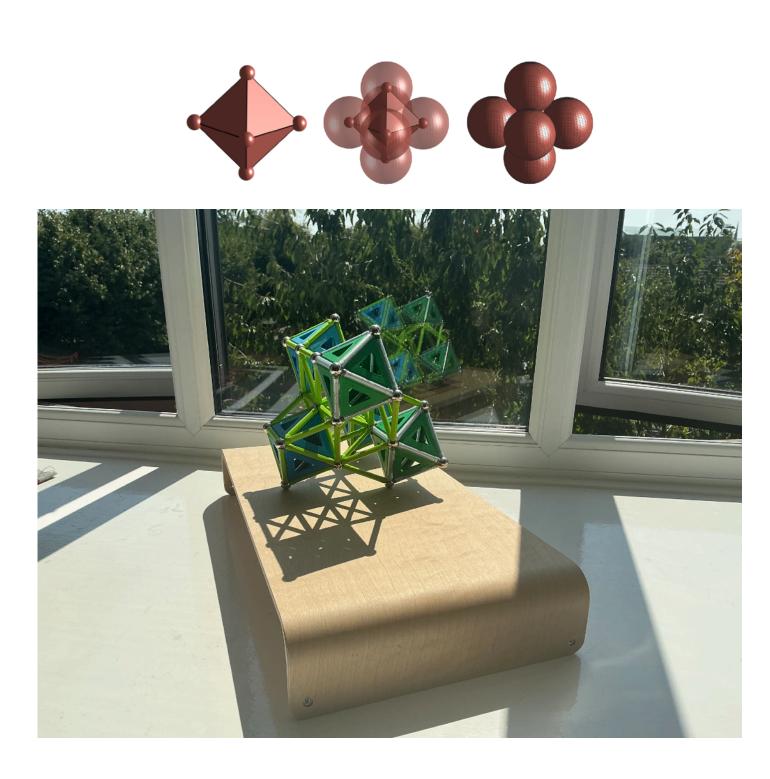
- Start with simpler molecules
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.
- Optimal configuration of such molecules?
- Kissing / coordination number of a sphere S^2 is 12



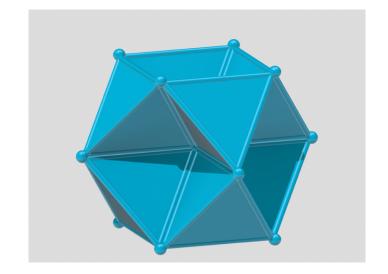


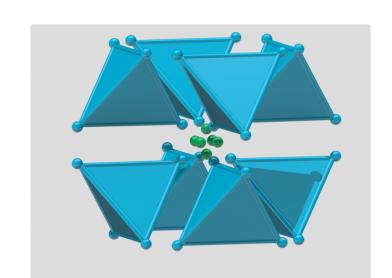


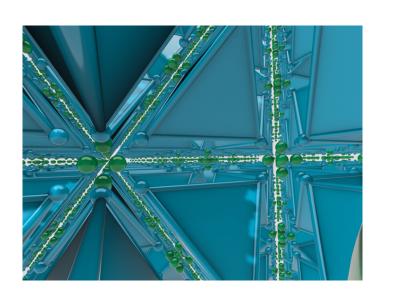


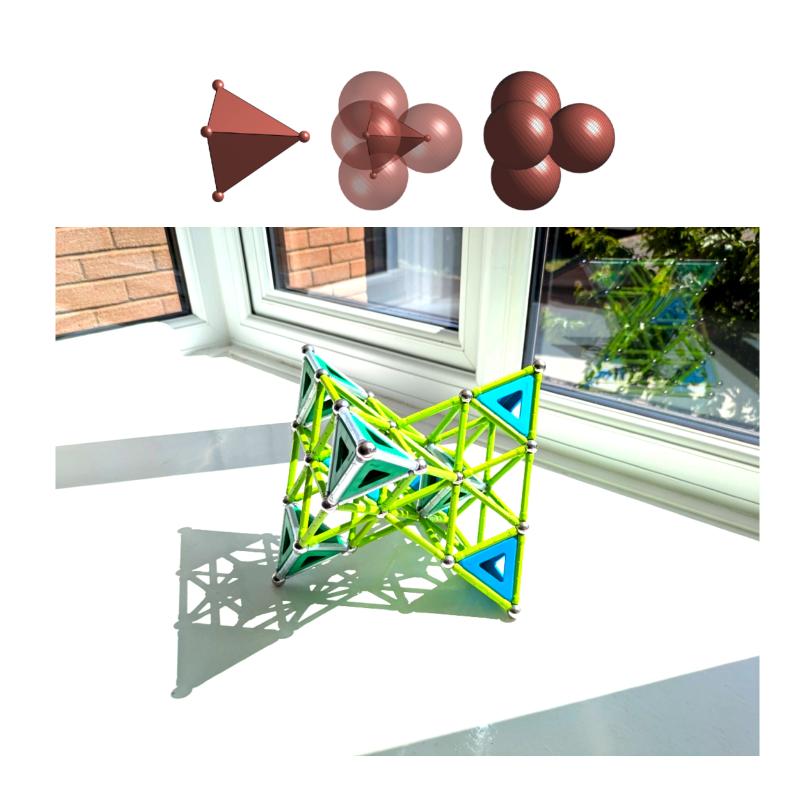


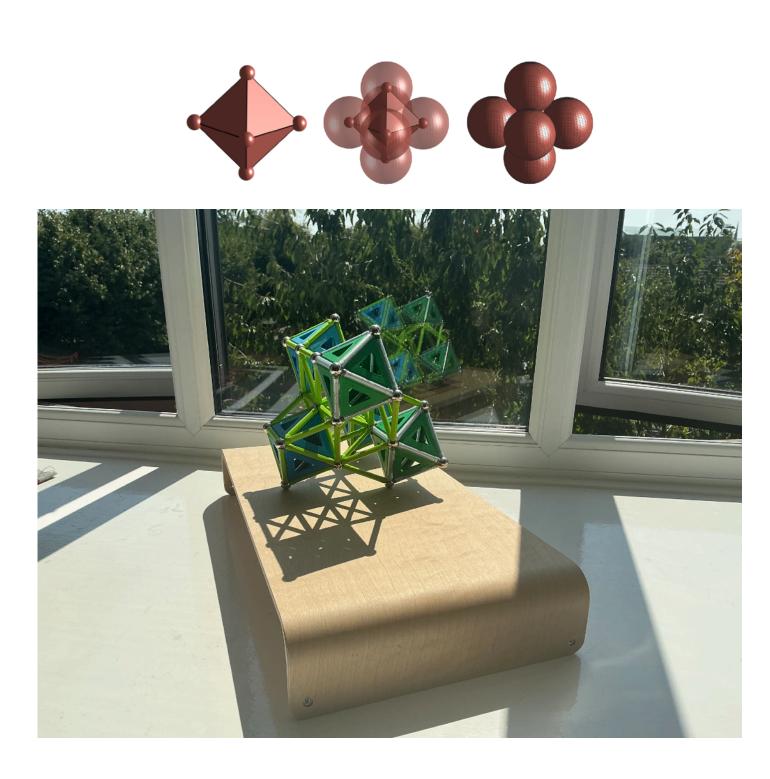
- Start with simpler molecules
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.
- Optimal configuration of such molecules?
- Kissing / coordination number of a sphere S^2 is 12
- Every vertex of the GEOMAG structure belongs to exactly one tetrahedron





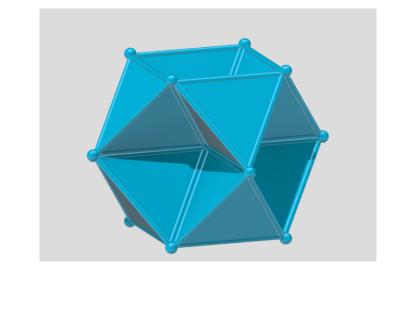


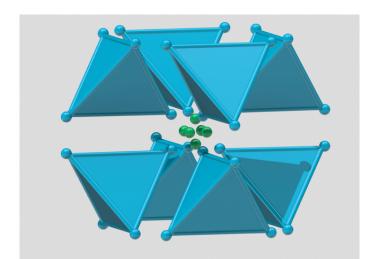


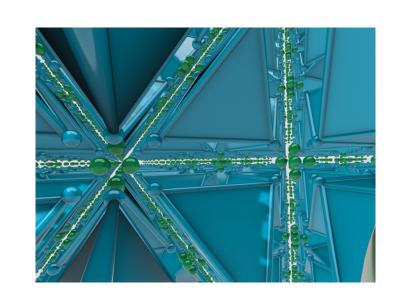


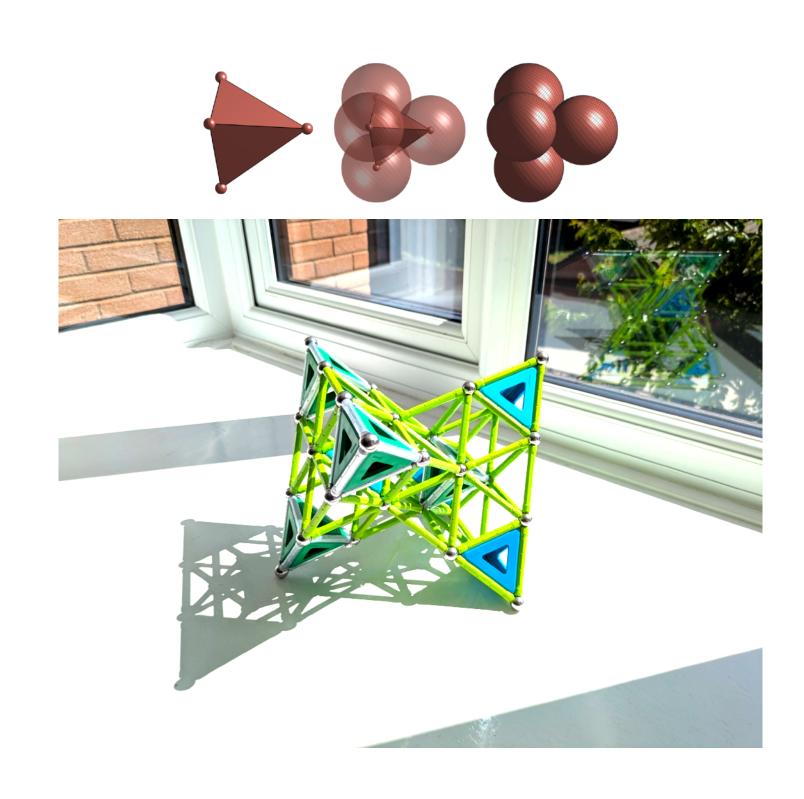
Start with simpler molecules

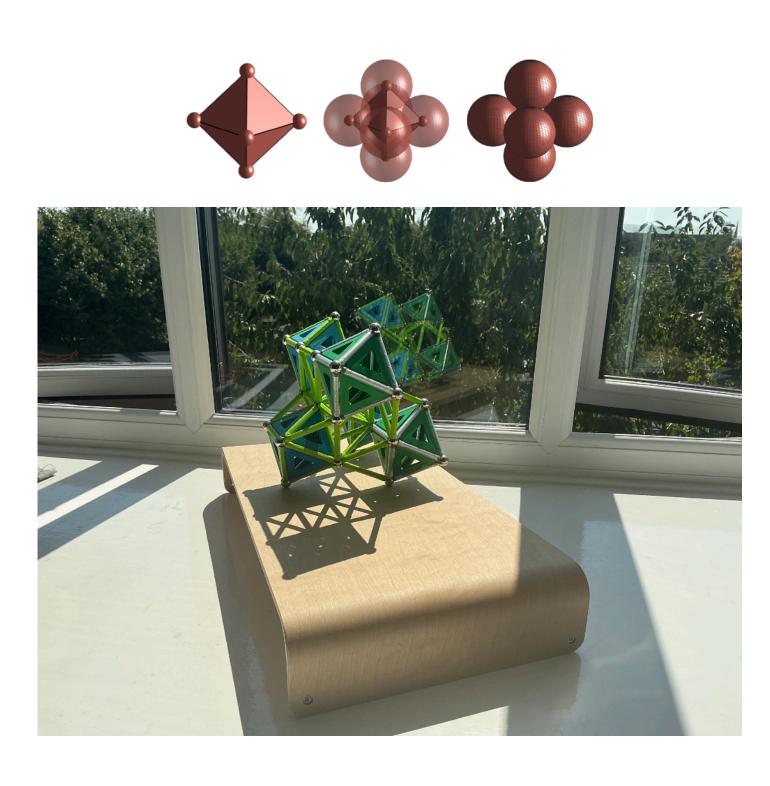
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.
- Optimal configuration of such molecules?
- Kissing / coordination number of a sphere S^2 is 12
- Every vertex of the GEOMAG structure belongs to exactly one tetrahedron
- Face-Center Cubic (FCC) close-packing of equal spheres



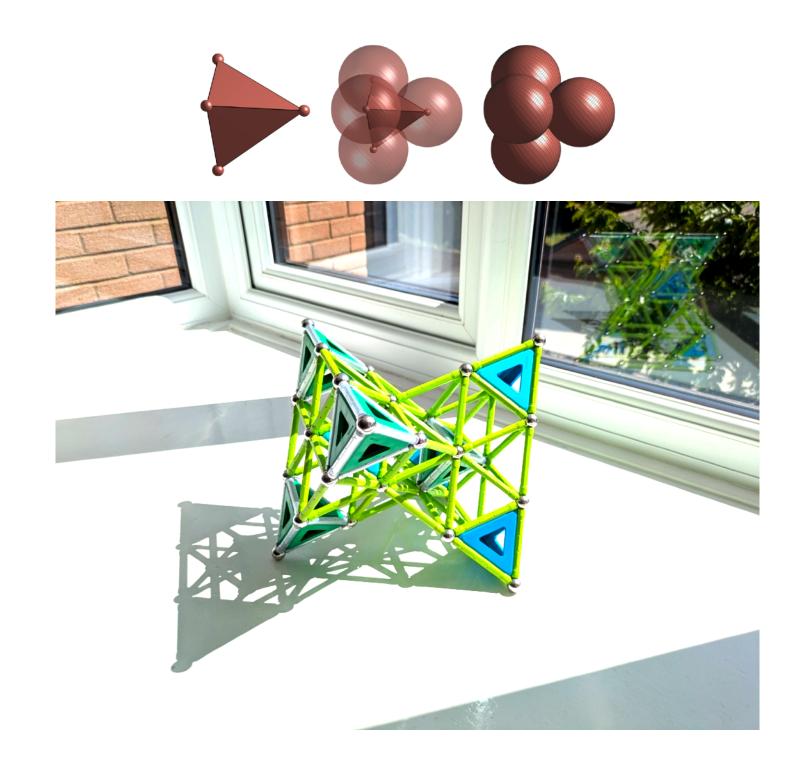


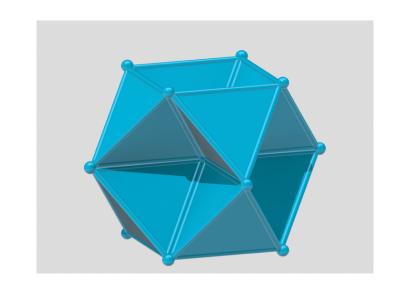


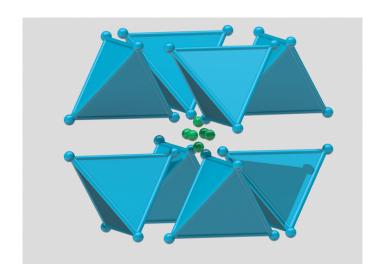


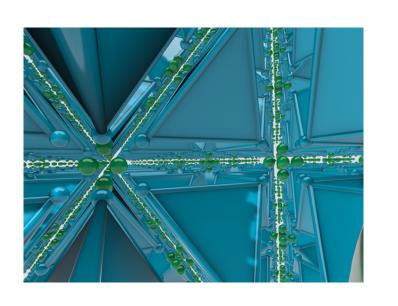


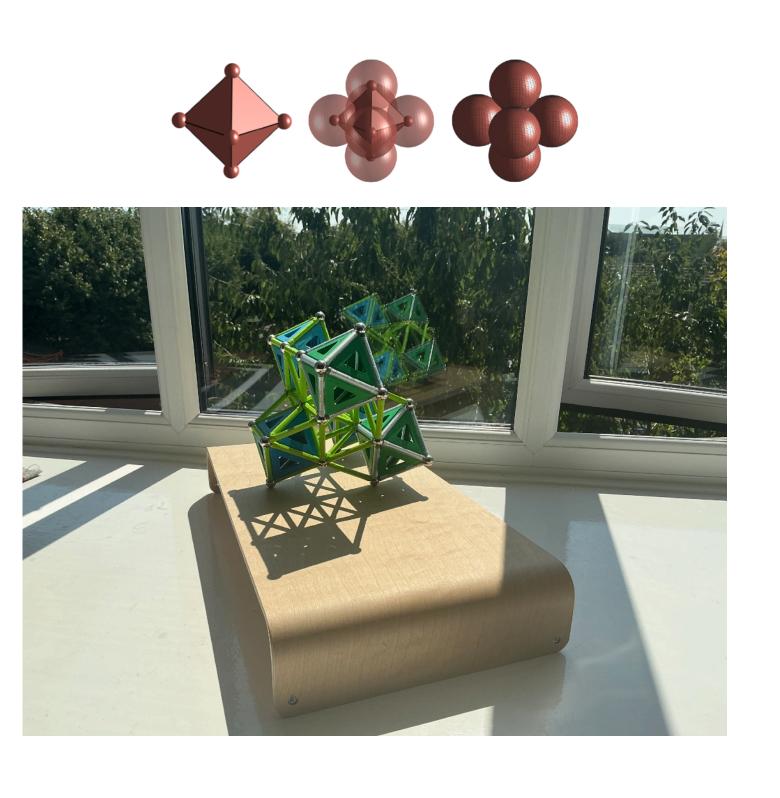
- Start with simpler molecules
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.
- Optimal configuration of such molecules?
- Kissing / coordination number of a sphere S^2 is 12
- Every vertex of the GEOMAG structure belongs to exactly one tetrahedron
- Face-Center Cubic (FCC) close-packing of equal spheres
 - Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey 'The Six-Cornered Snowflake'



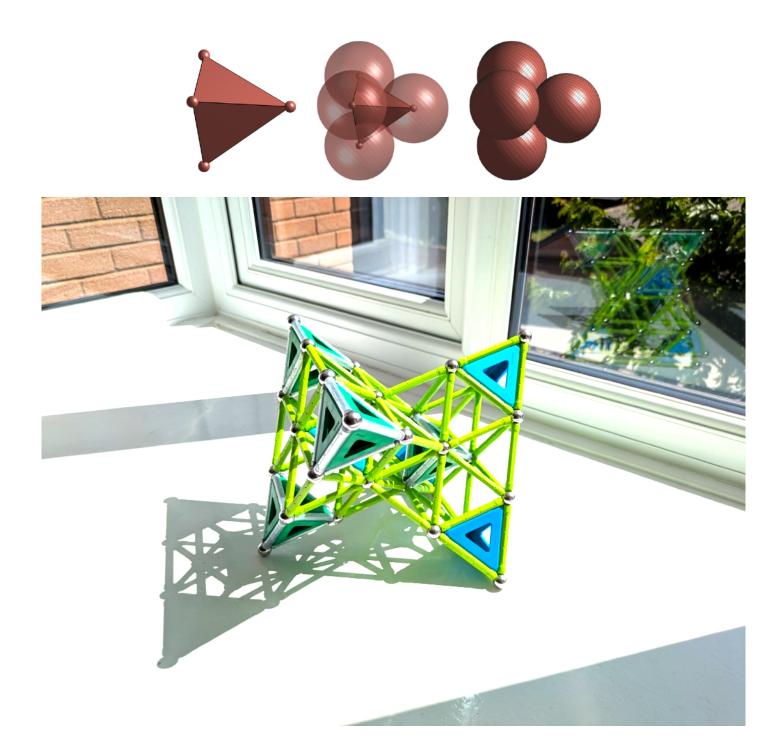


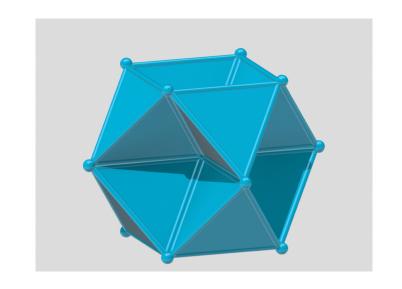


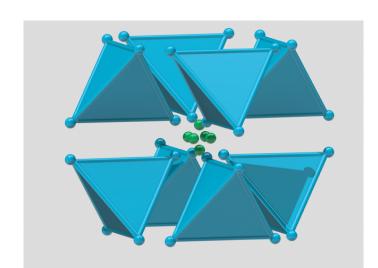


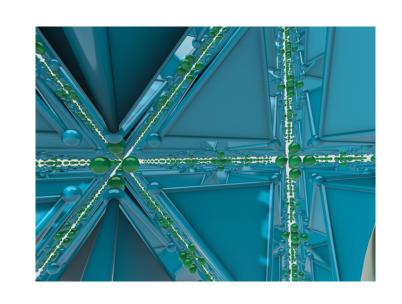


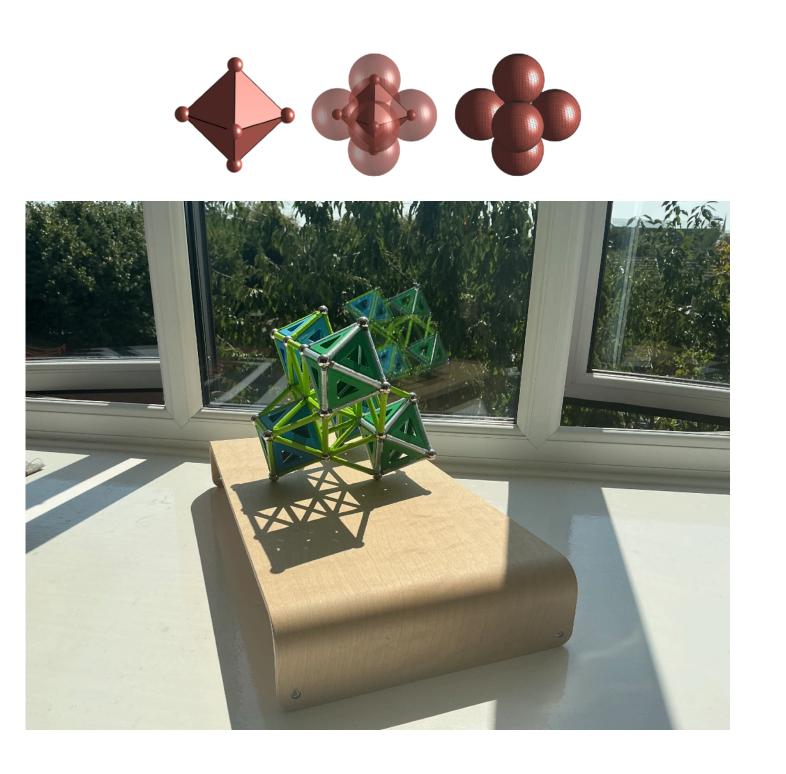
- Start with simpler molecules
- Tetrahedral / octahedral molecules
- Related to the cuboctahedron via the tetrahedral-octahedral honeycomb.
- Optimal configuration of such molecules?
- Kissing / coordination number of a sphere S^2 is 12
- Every vertex of the GEOMAG structure belongs to exactly one tetrahedron
- Face-Center Cubic (FCC) close-packing of equal spheres
 - Conjectured in 1611 by Johannes Kepler to be densest possible packing in his essey 'The Six-Cornered Snowflake'
 - Proved to be correct by Thomas Hales in 2005





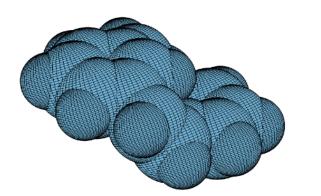


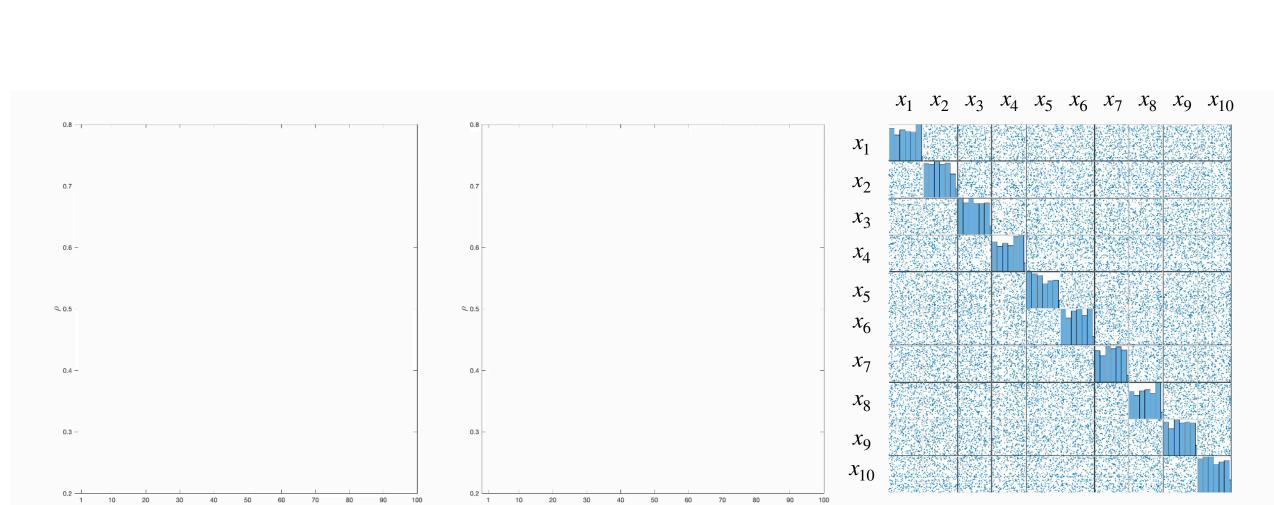




Space-filling / Spacefill Visualisation Style

Spheres with Van der Waals radii



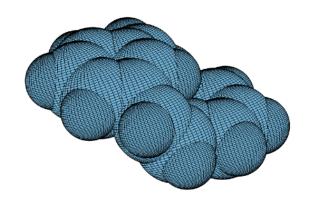


Visualization of the MCYPDE packing maximization run for the space group $P2_1$ (Left) Maximum packing density; (middle) average packing density of N-best packings at i-th iteration; (right) distribution of the packing generation at the iteration.

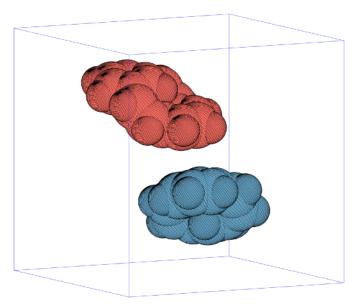
Packing MCYPDE in Space Group P2,

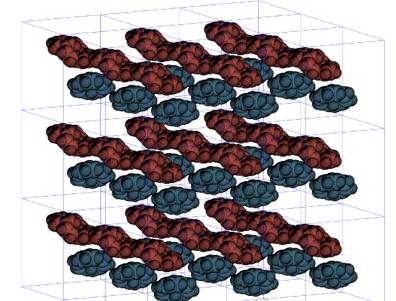
Space-filling / Spacefill Visualisation Style

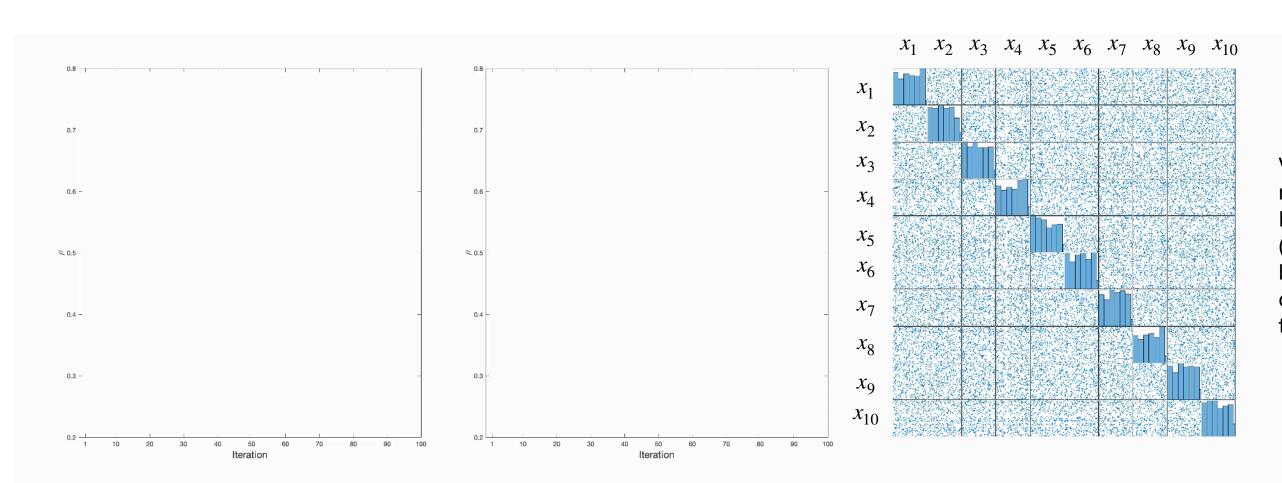
Spheres with Van der Waals radii



Fix the space group isomorphism class







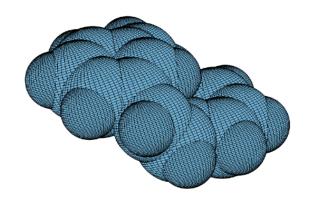
Visualization of the MCYPDE packing maximization run for the space group $P2_1$ (Left) Maximum packing density; (middle) average packing density of N-best packings at i-th iteration; (right) distribution of the packing generation at the iteration.

Packing MCYPDE in Space Group P2,

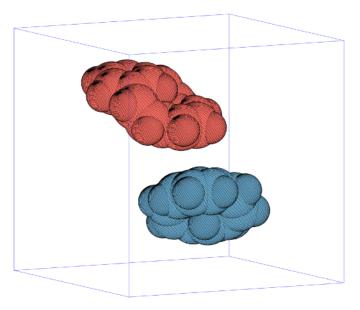
Non-linear non-convex optimisation problem

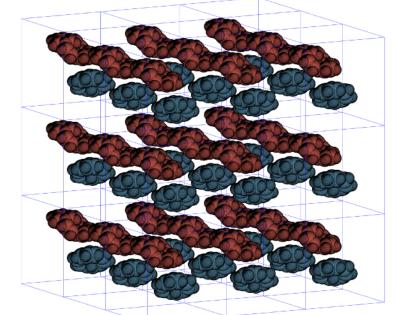
Space-filling / Spacefill Visualisation Style

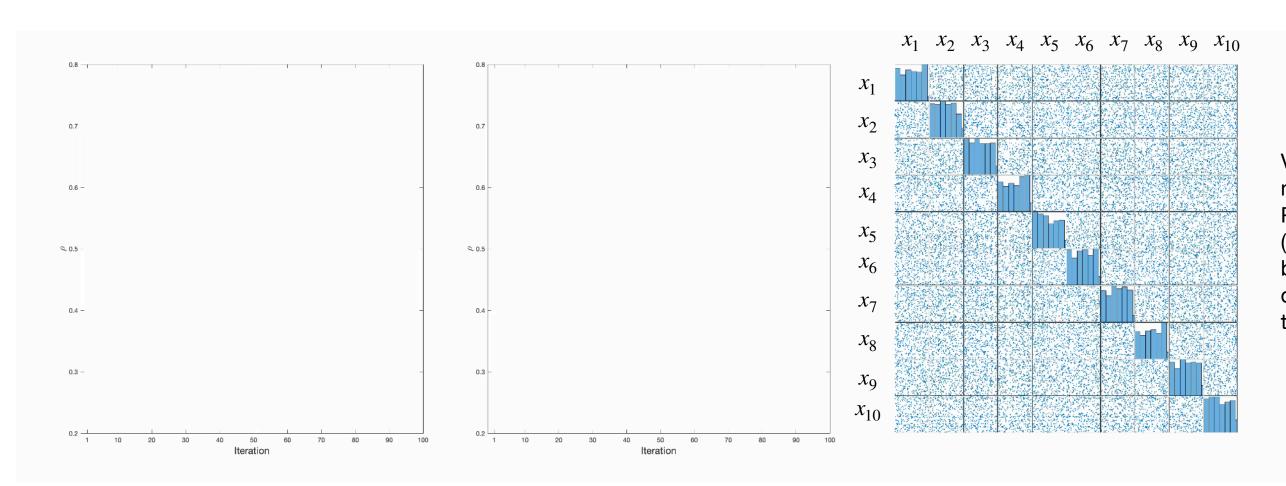
Spheres with Van der Waals radii



Fix the space group isomorphism class







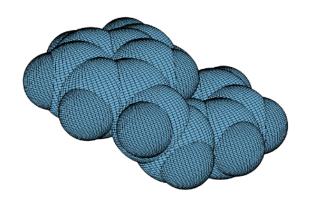
Visualization of the MCYPDE packing maximization run for the space group $P2_1$ (Left) Maximum packing density; (middle) average packing density of N-best packings at i-th iteration; (right) distribution of the packing generation at the iteration.

Packing MCYPDE in Space Group P2,

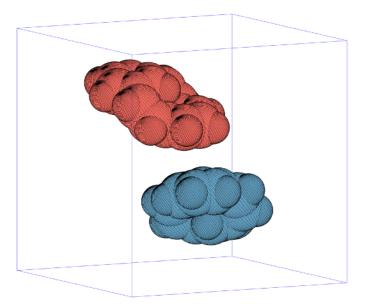
- Non-linear non-convex optimisation problem
 - Solve it via a modified version of the Entropic Trust Region Crystallographic Packing Algorithm

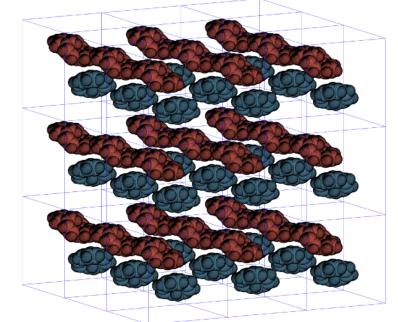
Space-filling / Spacefill Visualisation Style

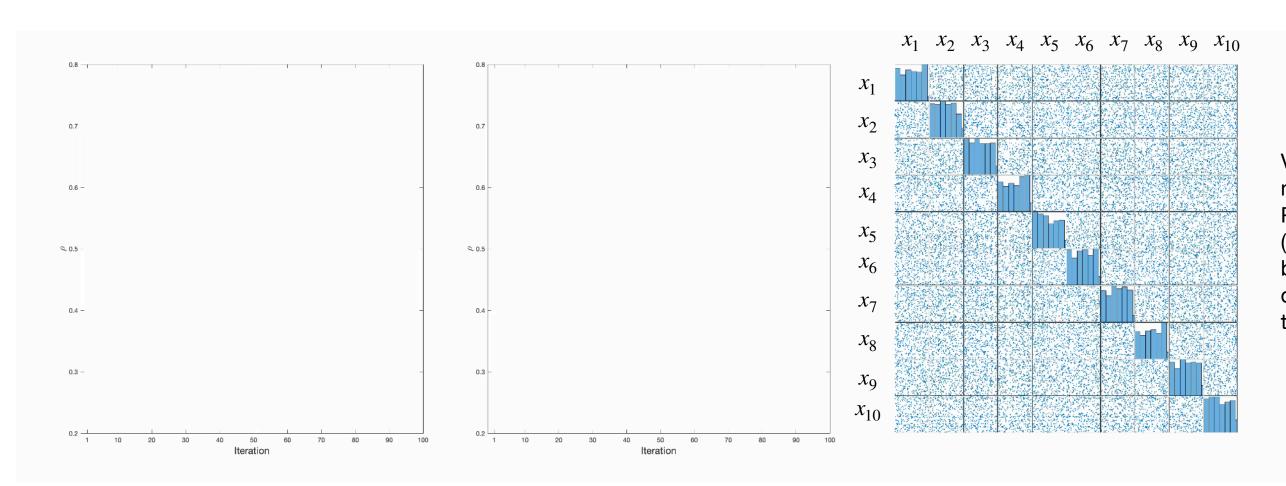
Spheres with Van der Waals radii



Fix the space group isomorphism class







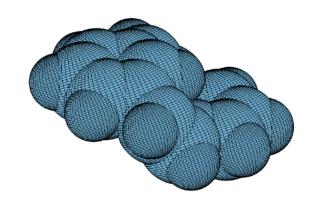
Visualization of the MCYPDE packing maximization run for the space group $P2_1$ (Left) Maximum packing density; (middle) average packing density of N-best packings at i-th iteration; (right) distribution of the packing generation at the iteration.

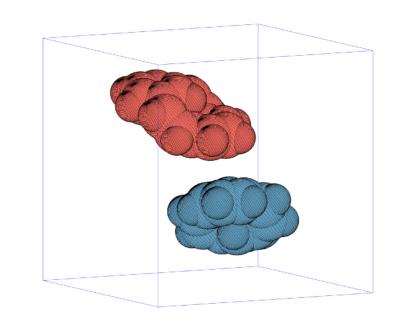
Packing MCYPDE in Space Group P2,

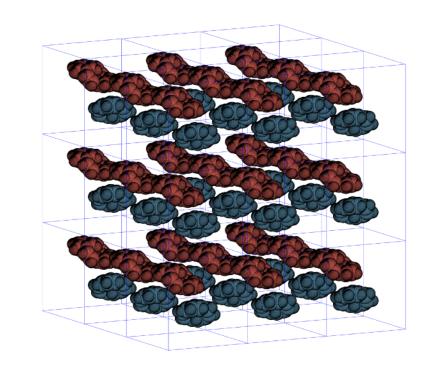
- Non-linear non-convex optimisation problem
 - Solve it via a modified version of the Entropic Trust Region Crystallographic Packing Algorithm
 - Information-geometry based global search method

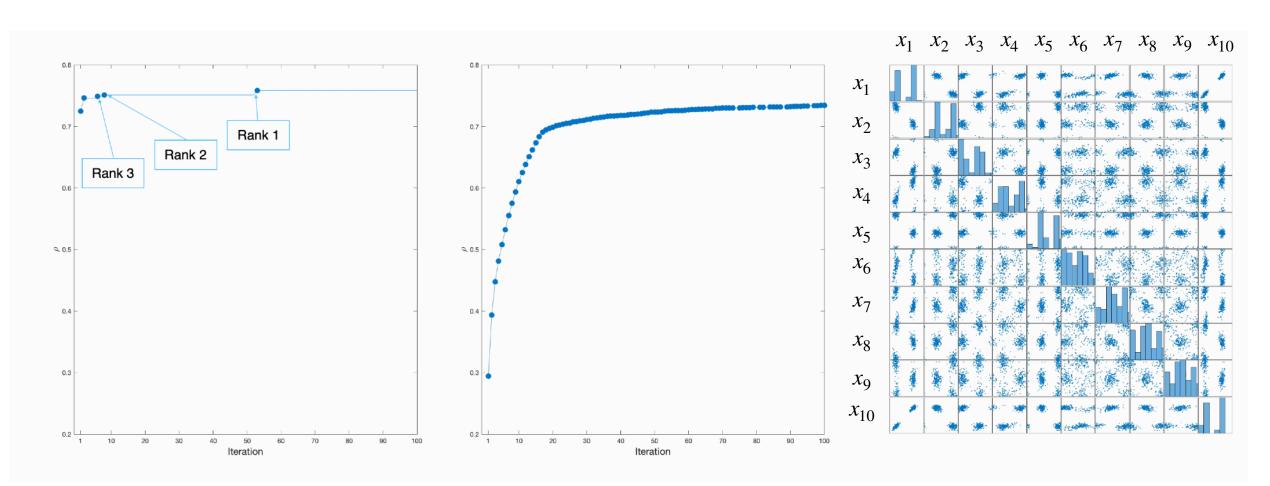
Molecule as a collection of Van der Waals spheres

Packing MCYPDE in Space Group P2,



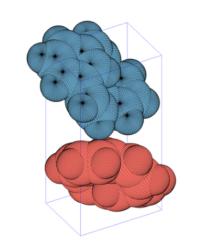


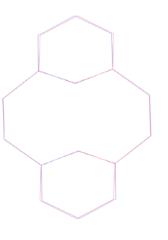




Visualization of the MCYPDE packing maximization run for the space group $P2_1$ (Left) Maximum packing density; (middle) average packing density of N-best packings at i-th iteration; (right) distribution of the packing generation at the iteration.

Reference	Comparison	Molecules in Common	ρ
Ground state	Rank 1	30 out of 30	0.7584
Ground state	Rank 2	8 out of 30	0.7514
Ground state	Rank 3	10 out of 30	0.7510





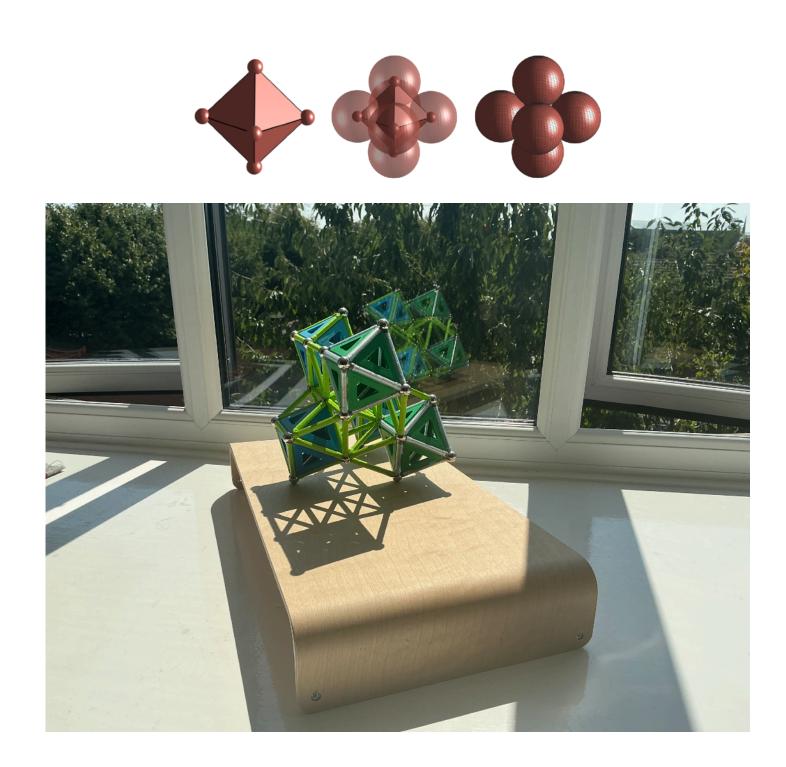


Visualization of the packing match to the CSP lowest energy structure (Left) A single unit cell displayed in a space-filling representation, where colors indicate symmetry operations modulo lattice translations. (Middle and right) Overlay in a wireframe representation: the global energy minimum (blue) and the matching packing (red). (Middle) Asymmetric unit of the configuration; (right) a 15-molecule cluster.

 x_7 x_6

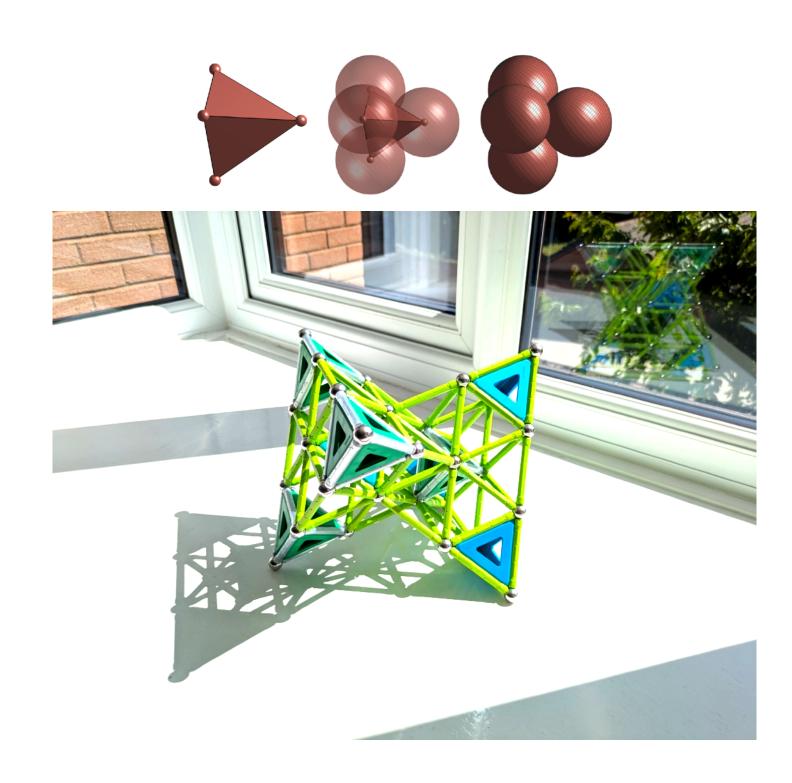
Symmetries of the tetrahedral and octahedral molecule packing models

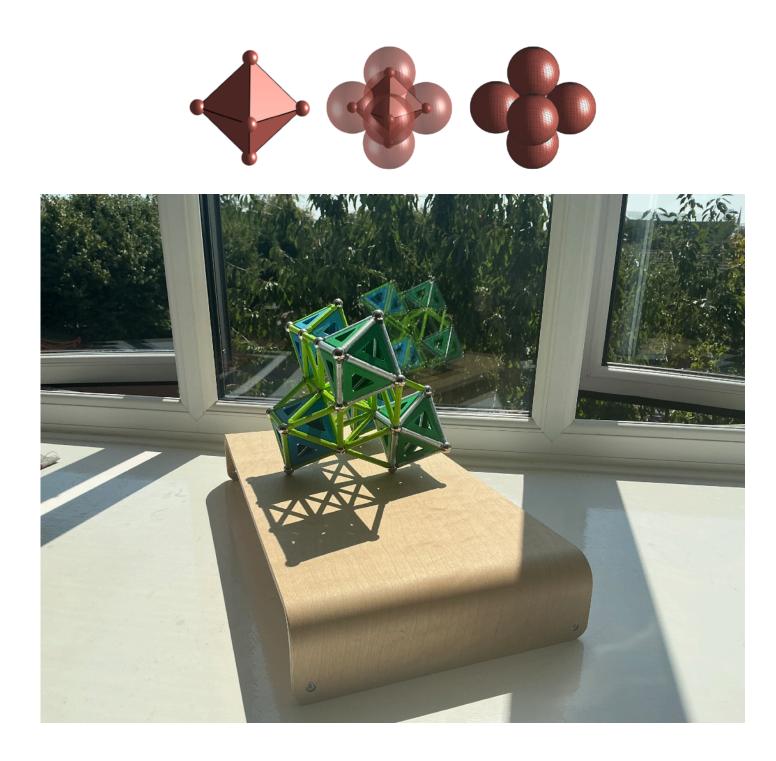




Symmetries of the tetrahedral and octahedral molecule packing models

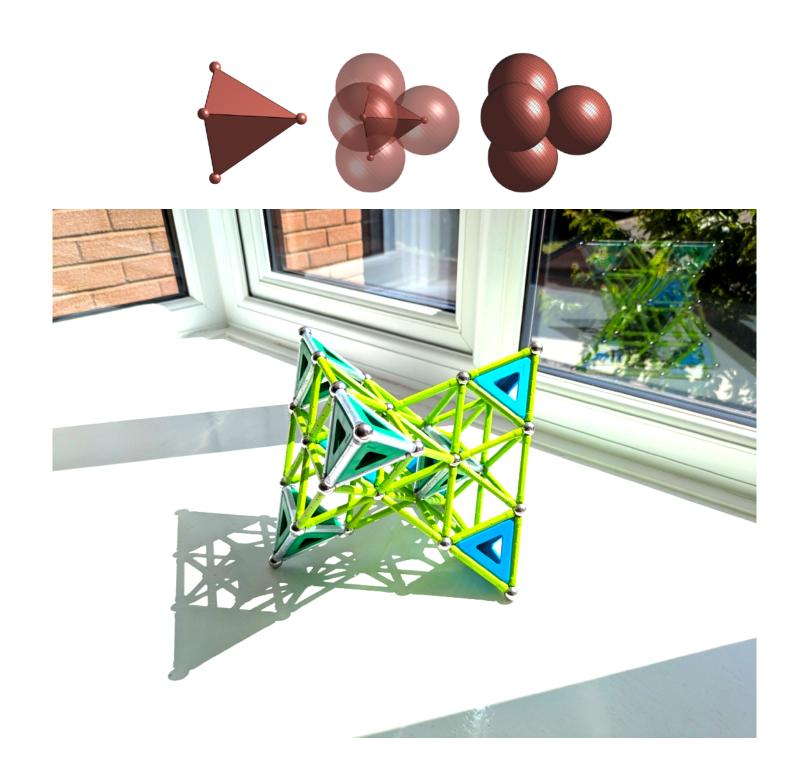
1. Inversions – tetrahedra and octahedra of different colours are related by this isometry.

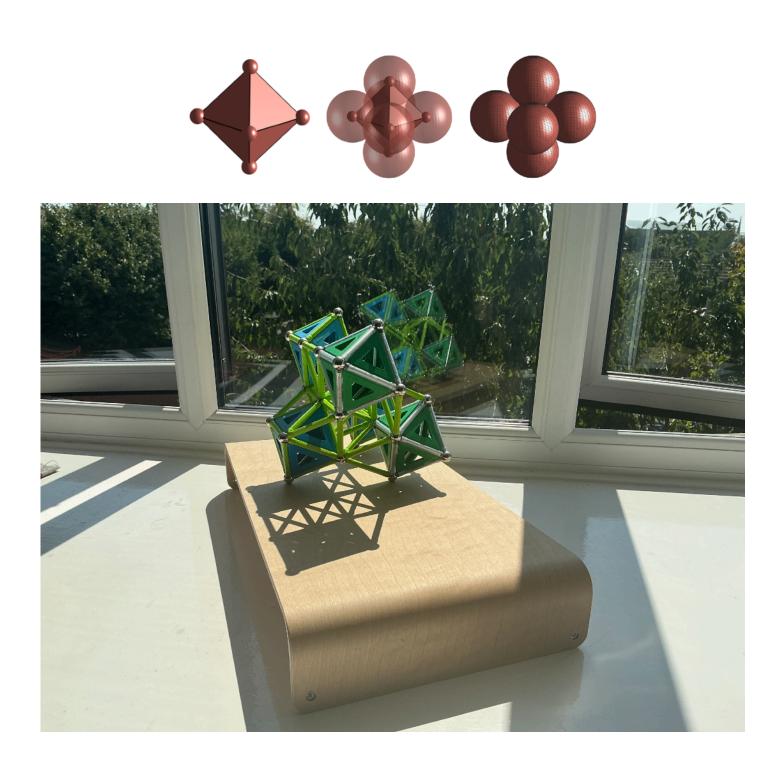




Symmetries of the tetrahedral and octahedral molecule packing models

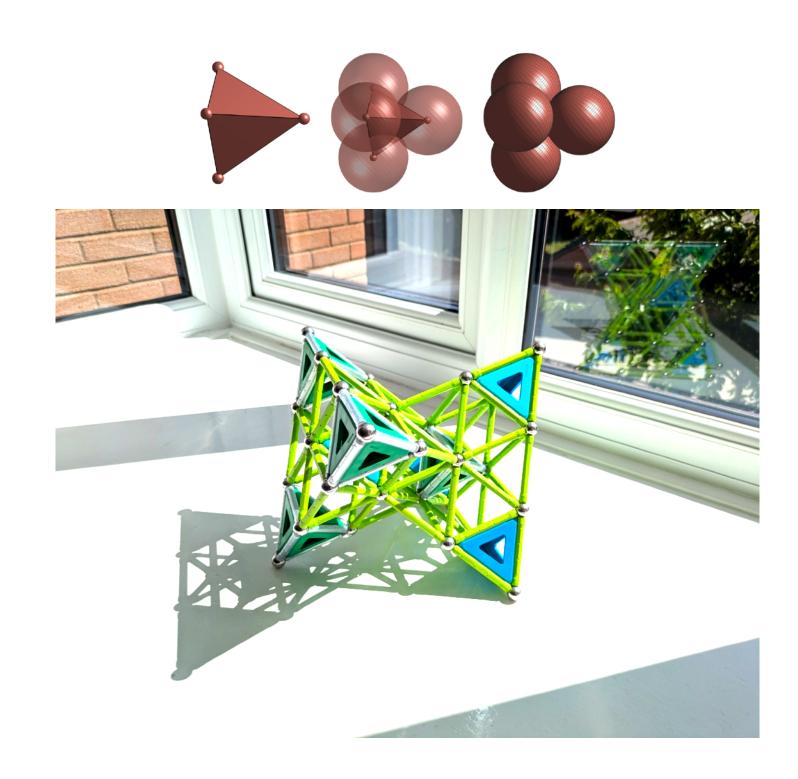
- 1. Inversions tetrahedra and octahedra of different colours are related by this isometry.
- 2.Lattice translations tetrahedra with the same colour are related by this isometry.

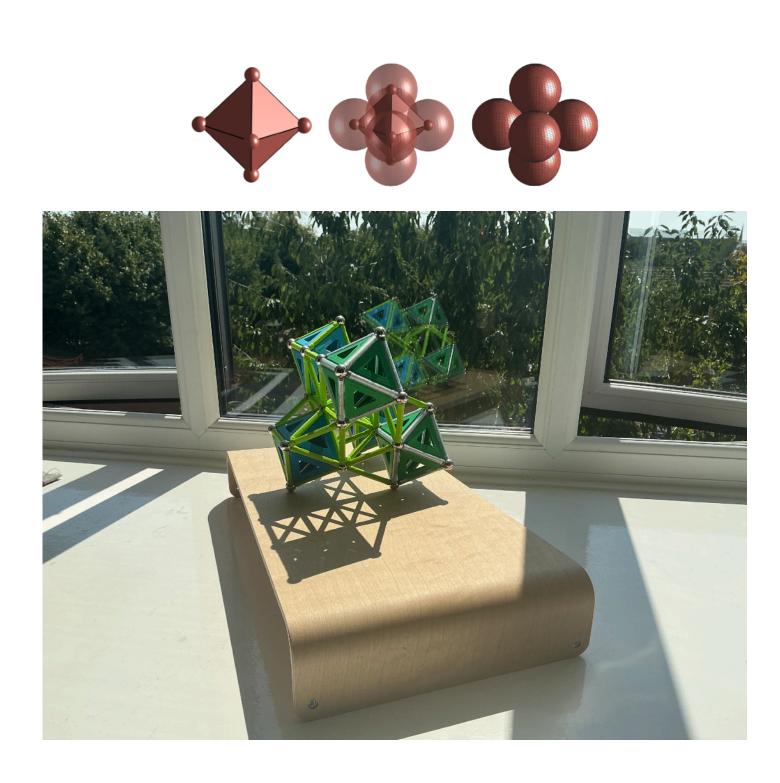




Symmetries of the tetrahedral and octahedral molecule packing models

- 1. Inversions tetrahedra and octahedra of different colours are related by this isometry.
- 2.Lattice translations tetrahedra with the same colour are related by this isometry.
 - The octahedral configuration is a lattice packing.

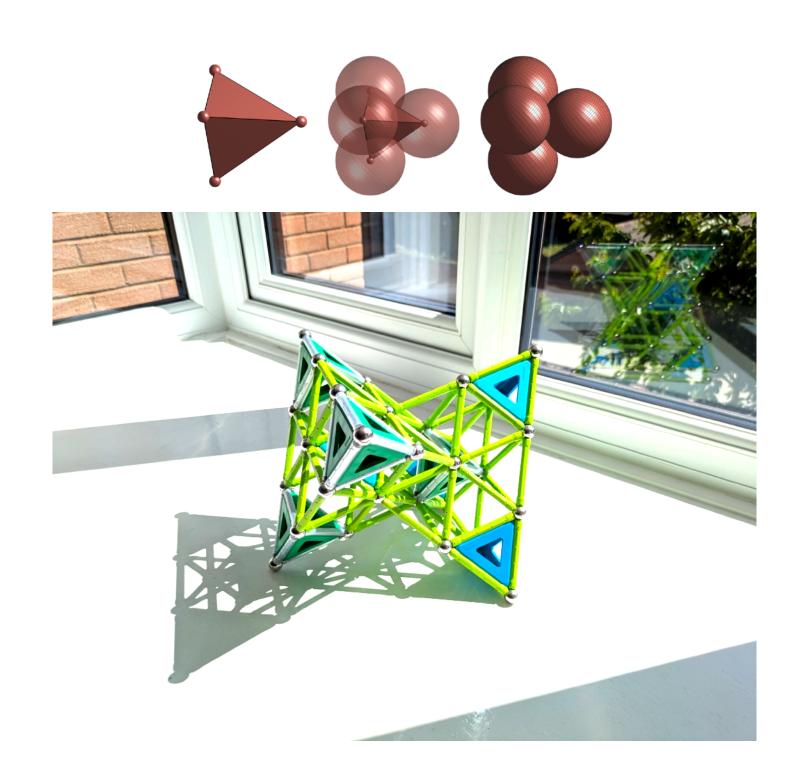


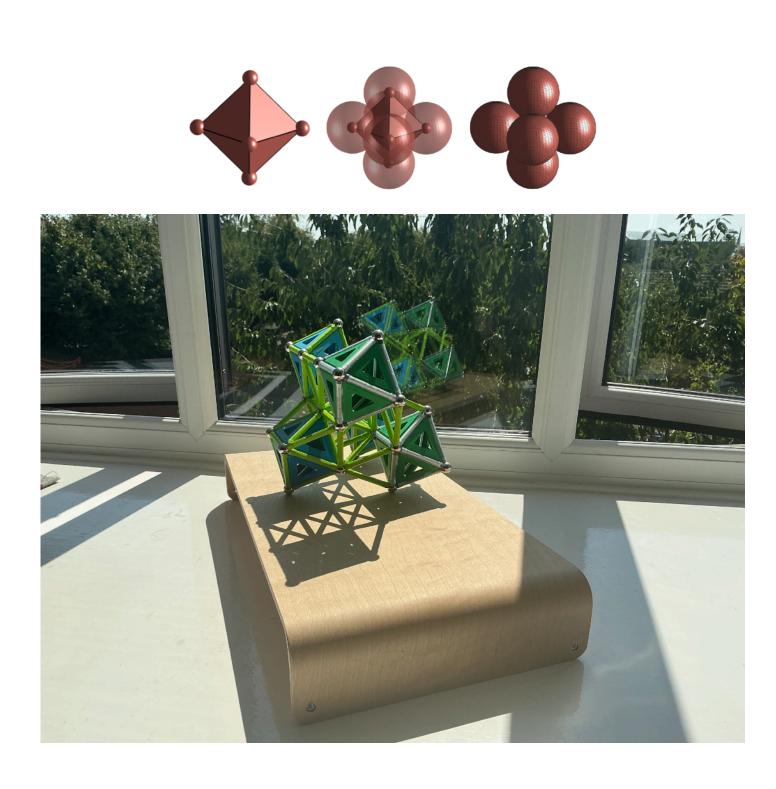


Symmetries of the tetrahedral and octahedral molecule packing models

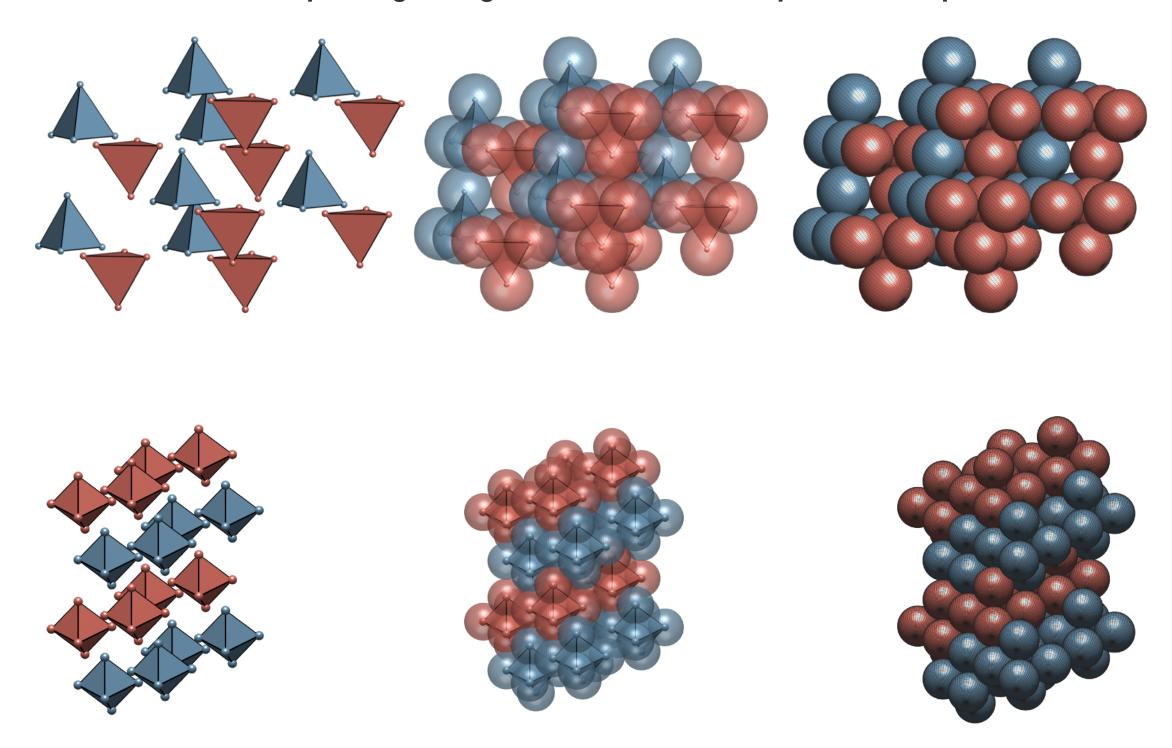
- 1. Inversions tetrahedra and octahedra of different colours are related by this isometry.
- 2.Lattice translations tetrahedra with the same colour are related by this isometry.
 - The octahedral configuration is a lattice packing.

The obvious choice is to start with space group $P\bar{1}$

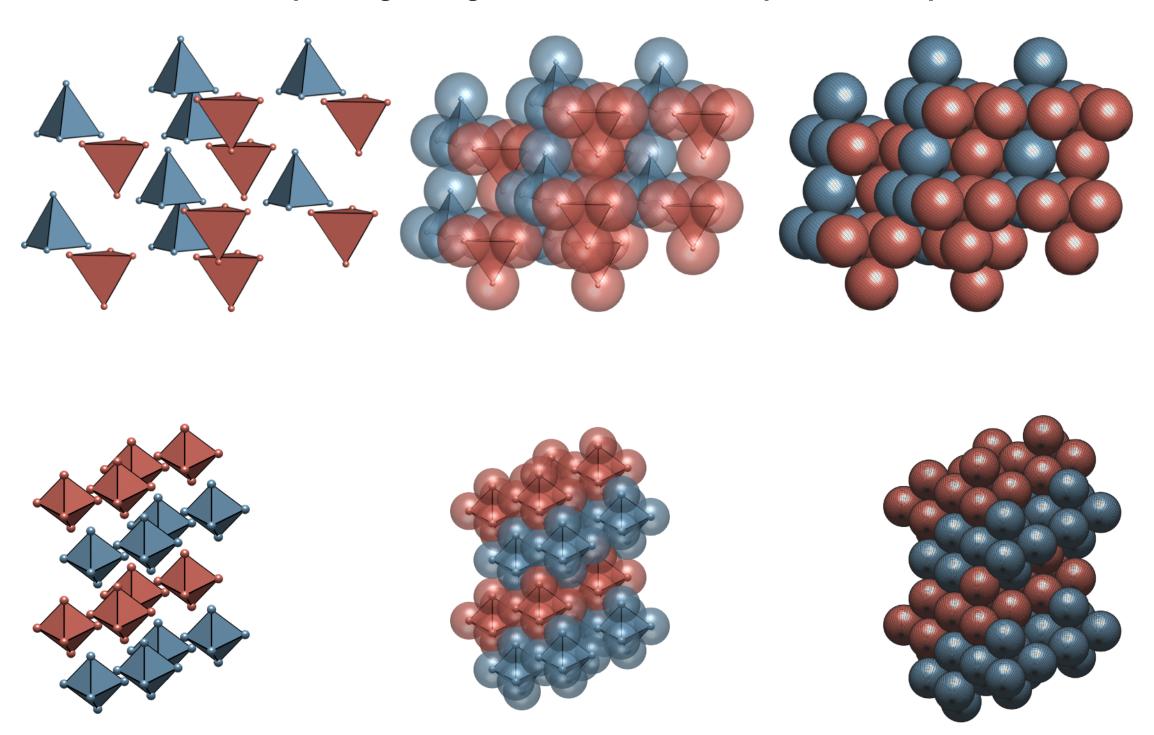




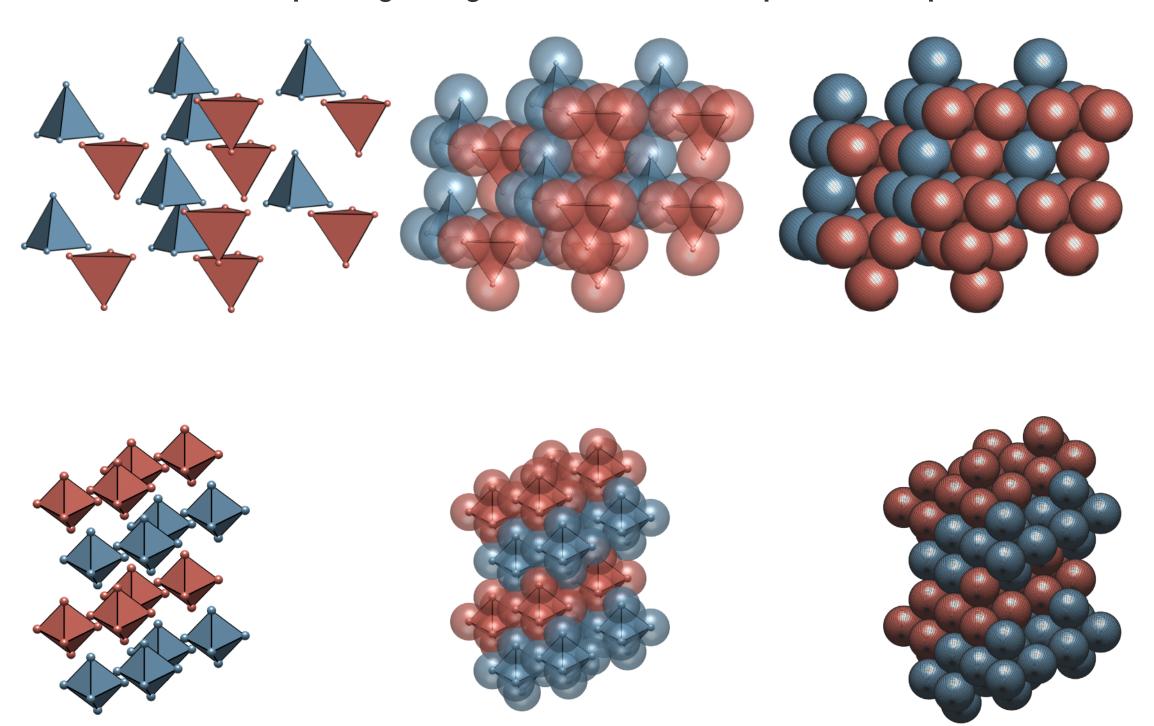
. Packing density formula
$$\rho\left(\mathcal{K}_{G}\right) = \frac{N \operatorname{vol}(K)}{\operatorname{vol}(U)}$$



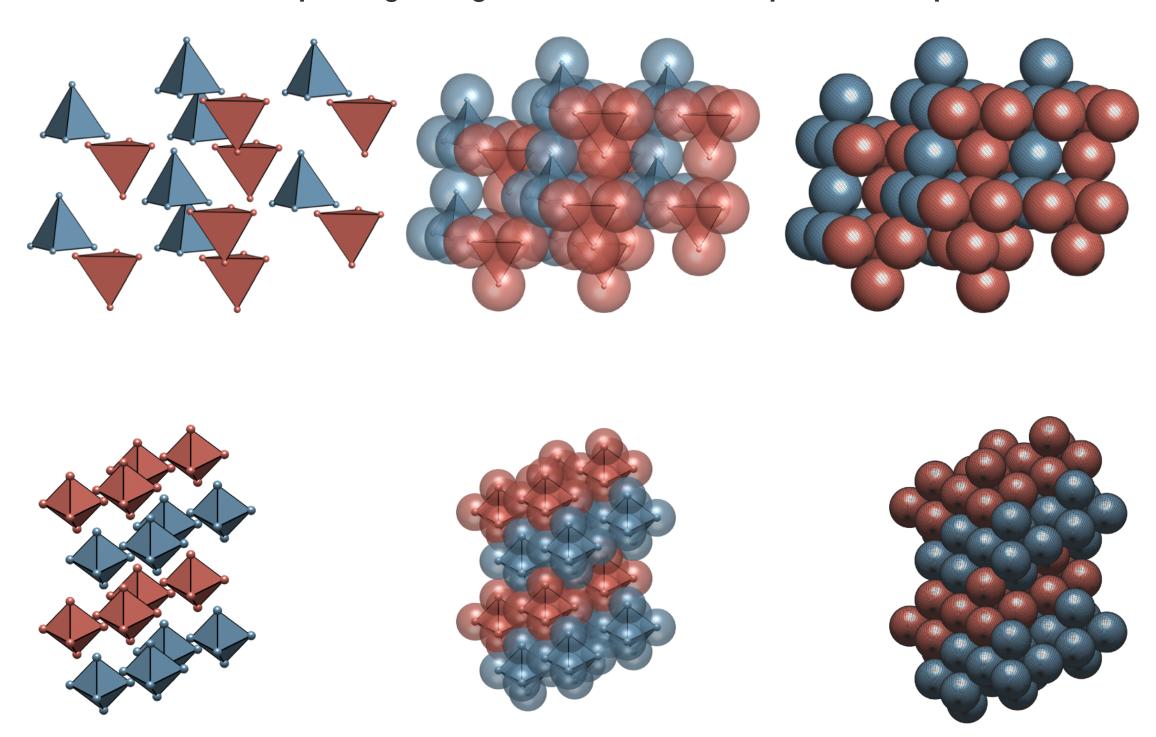
- . Packing density formula $\rho\left(\mathcal{K}_{G}\right) = \frac{N \operatorname{vol}(K)}{\operatorname{vol}(U)}$
- Volume of the unit cell $\operatorname{vol}(U) = 2^7$



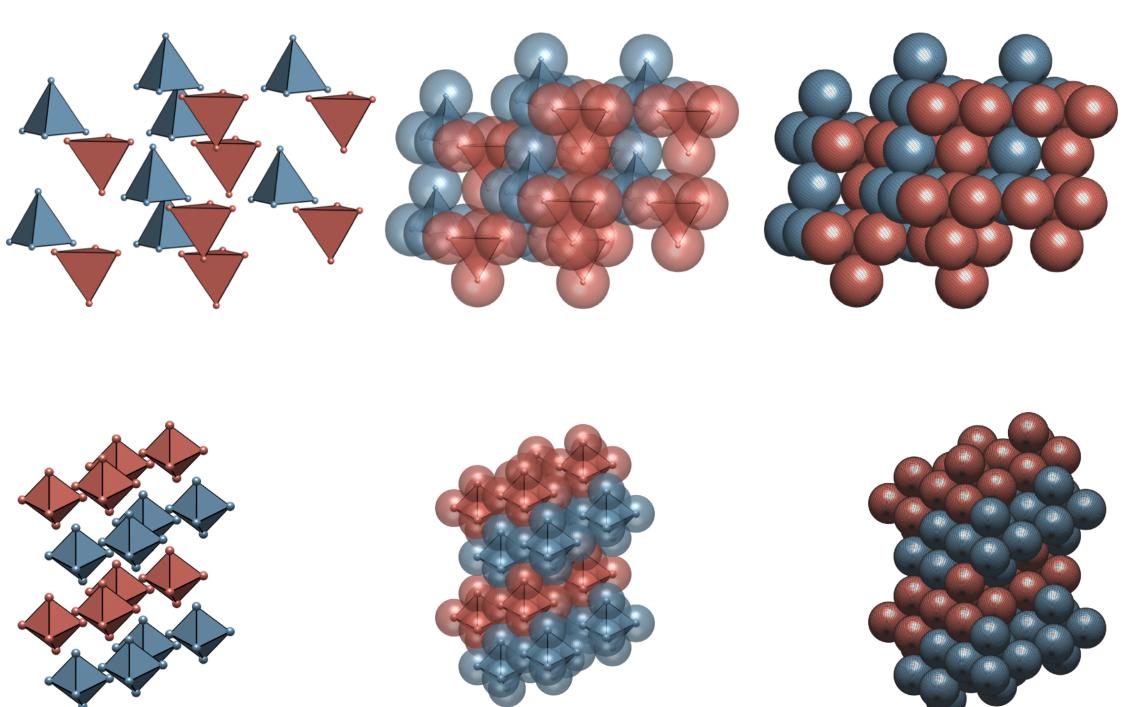
- . Packing density formula $\rho\left(\mathcal{K}_{G}\right) = \frac{N \operatorname{vol}(K)}{\operatorname{vol}(U)}$
- Volume of the unit cell $\operatorname{vol}(U) = 2^7$
- . Volume of the our tetrahedral molecule is $\operatorname{vol}(K) = \frac{16}{3}\pi 2^{\frac{3}{2}}$



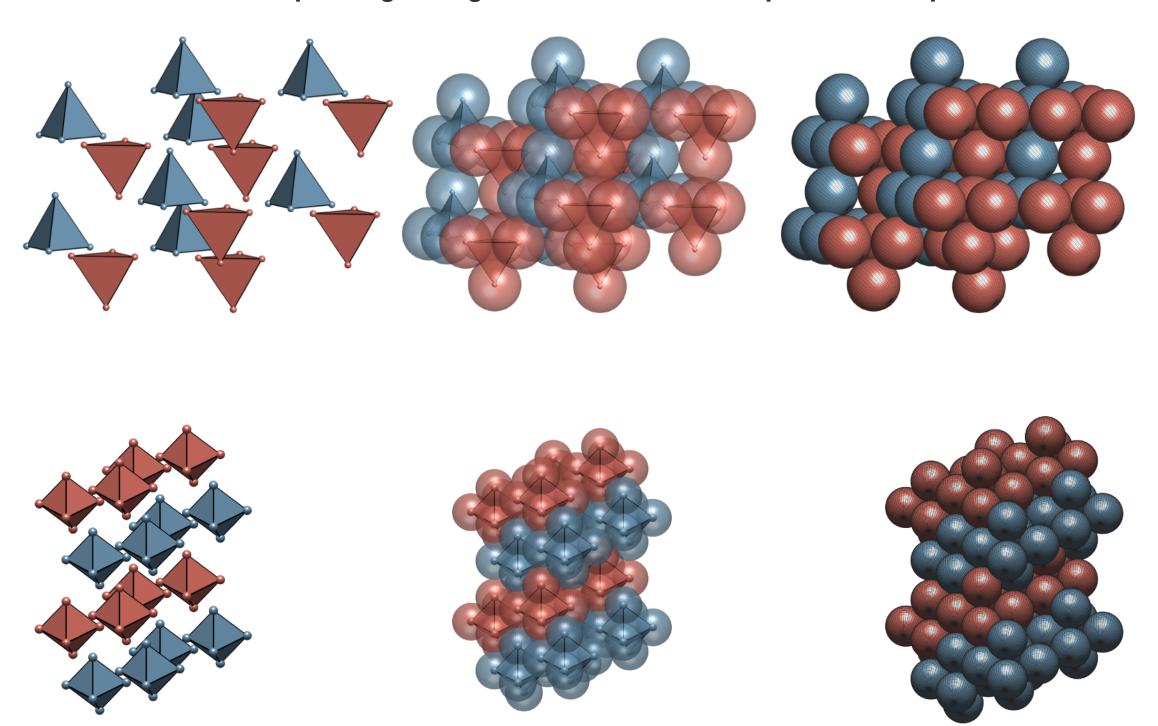
- . Packing density formula $\rho\left(\mathcal{K}_{G}\right) = \frac{N \operatorname{vol}(K)}{\operatorname{vol}(U)}$
- Volume of the unit cell $vol(U) = 2^7$
- . Volume of the our tetrahedral molecule is $\operatorname{vol}(K) = \frac{16}{3}\pi 2^{\frac{3}{2}}$
- Number of elements of factor group G/L where L is the lattice subgroup of G is N=2

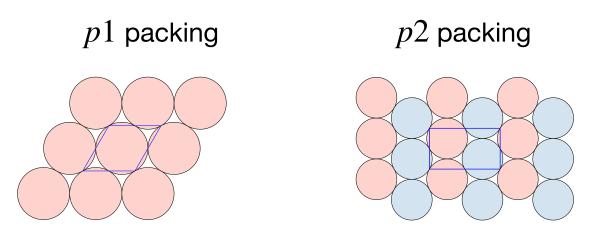


- . Packing density formula $\rho\left(\mathcal{K}_{G}\right) = \frac{N \operatorname{vol}(K)}{\operatorname{vol}(U)}$
- Volume of the unit cell $vol(U) = 2^7$
- . Volume of the our tetrahedral molecule is $\operatorname{vol}(K) = \frac{16}{3}\pi 2^{\frac{3}{2}}$
- Number of elements of factor group G/L where L is the lattice subgroup of G is N=2
- Packing density of tetrahedral and octahedral molecule packings $\rho\left(\mathcal{K}_G\right) = \frac{\pi}{\sqrt{18}}$



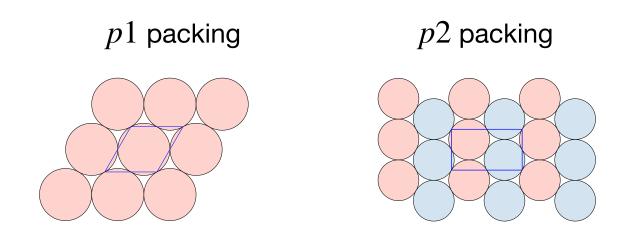
- . Packing density formula $\rho\left(\mathcal{K}_{G}\right) = \frac{N \operatorname{vol}(K)}{\operatorname{vol}(U)}$
- Volume of the unit cell $vol(U) = 2^7$
- . Volume of the our tetrahedral molecule is $\operatorname{vol}(K) = \frac{16}{3}\pi 2^{\frac{3}{2}}$
- Number of elements of factor group G/L where L is the lattice subgroup of G is N=2 . Packing density of tetrahedral and octahedral molecule packings $\rho\left(\mathcal{K}_G\right)=\frac{\pi}{\sqrt{18}}$
- Which other space groups to search?





• Lattice points are centres of a 2-fold rotational symmetry.

Fibrifold Space Group Notation

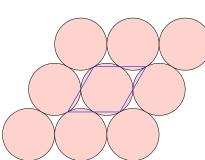


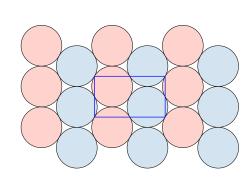
Fibrifold Space Group Notation

- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.

p2 packing

Fibrifold Space Group Notation



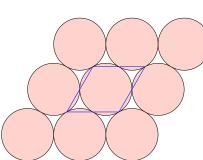


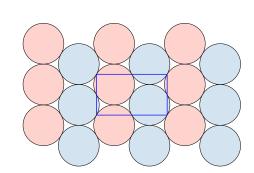
- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- A sphere S^2 with four nodes.



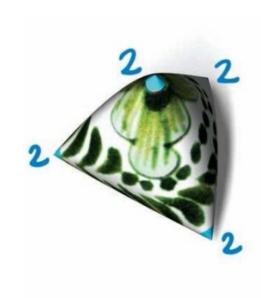
p2 packing

Fibrifold Space Group Notation



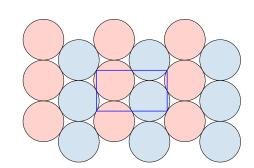


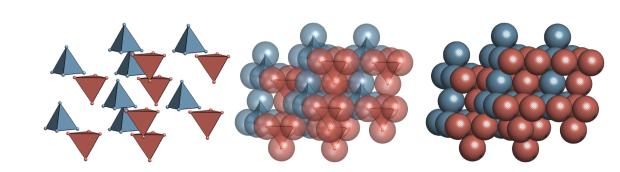
- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- A sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.



p2 packing

Fibrifold Space Group Notation

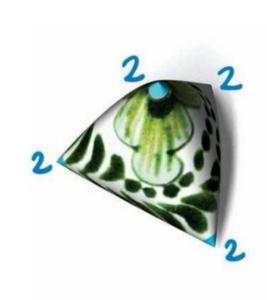




Lattice points are centres of a 2-fold rotational symmetry.

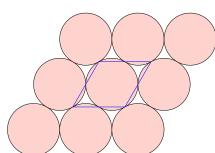
- Layers of 2 2 2 2 orbifolds

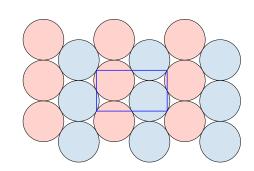
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.



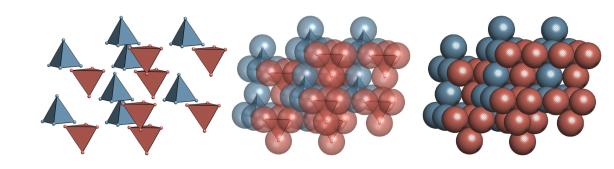
p2 packing

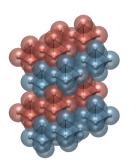
Fibrifold Space Group Notation

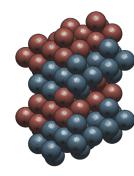




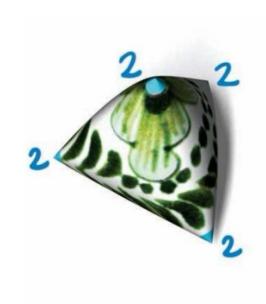
- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.





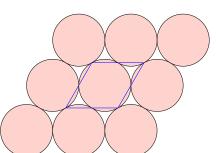


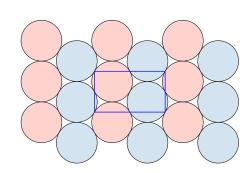
- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation



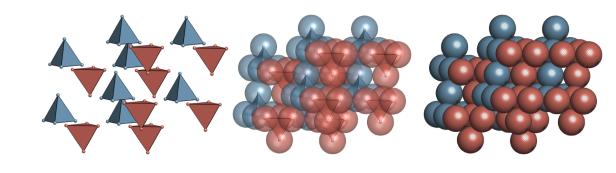
p2 packing

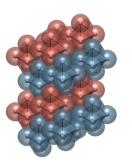
Fibrifold Space Group Notation

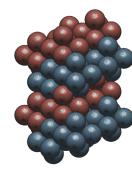




- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.

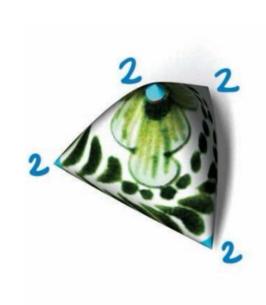


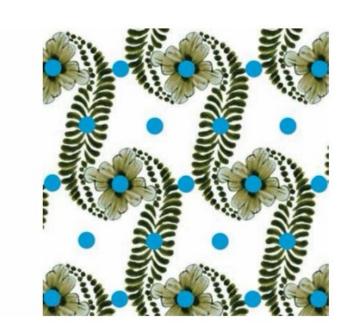




- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation

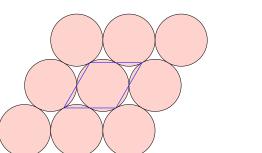
Fibre-bundle whose base spaces and fibres are orbifolds:

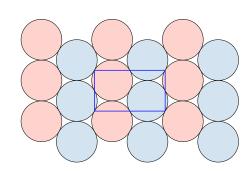




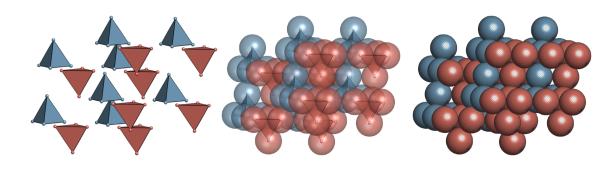
p2 packing

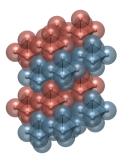
Fibrifold Space Group Notation

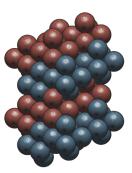




- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.

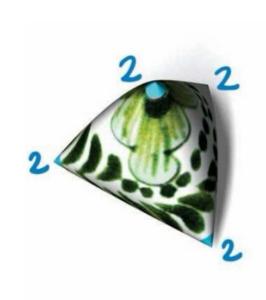


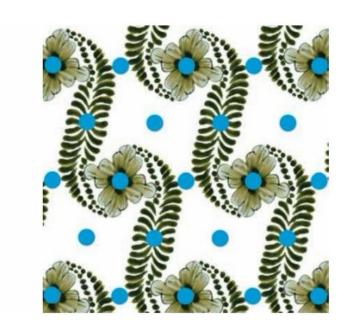




- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation
- "fibered orbifold" or a fibrifold

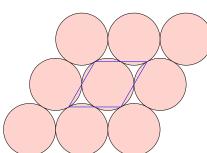
Fibre-bundle whose base spaces and fibres are orbifolds:

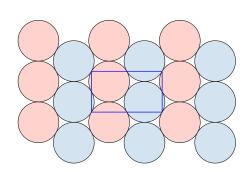




p2 packing

Fibrifold Space Group Notation



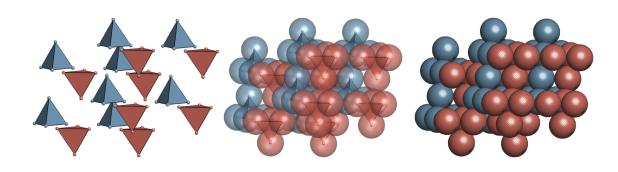


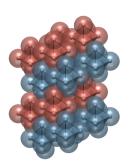
- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.

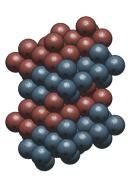
p2 orbifold signature: 2 2 2 2

• Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.

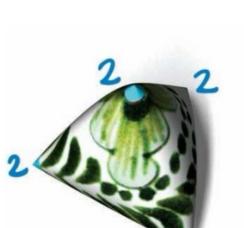
• Fibre-bundle whose base spaces and fibres are orbifolds:





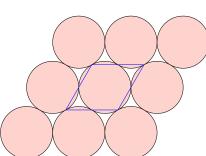


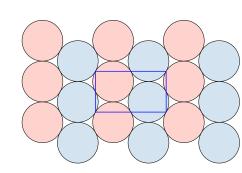
- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation
- "fibered orbifold" or a fibrifold
 - base space is orbifold: 2 2 2 2



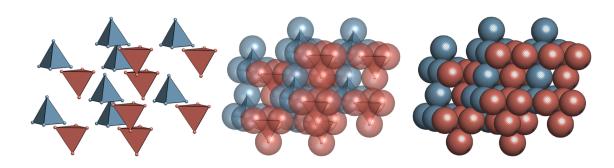
p2 packing

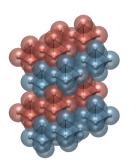
Fibrifold Space Group Notation

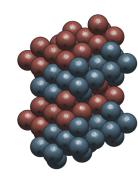




- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.

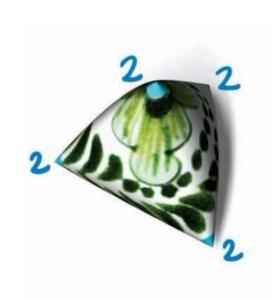






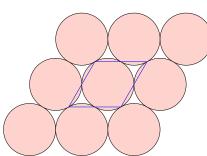
- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation
- "fibered orbifold" or a fibrifold
 - base space is orbifold: 2 2 2 2
 - fibre: S^1

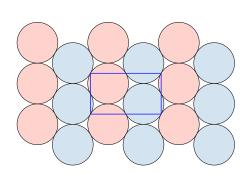
• Fibre-bundle whose base spaces and fibres are orbifolds:



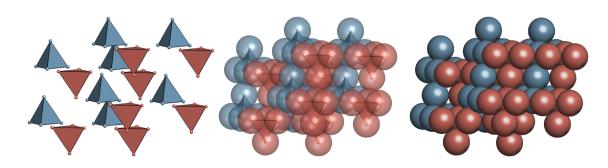
p2 packing

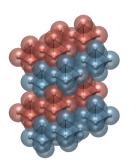
Fibrifold Space Group Notation

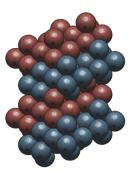




- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.



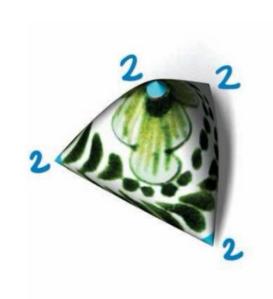




- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation
- "fibered orbifold" or a fibrifold
 - base space is orbifold: 2 2 2 2
 - fibre: S^1

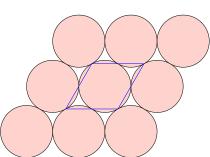
Fibre-bundle whose base spaces and fibres are orbifolds:

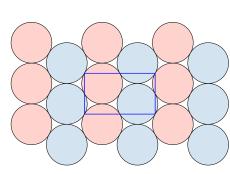
• Fibrifold name of space group is $P\bar{1}$ (2 2 2 2)



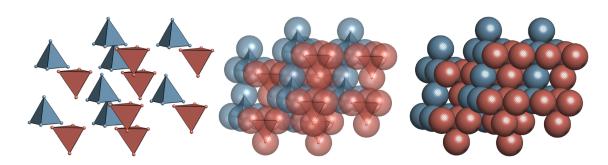
p2 packing

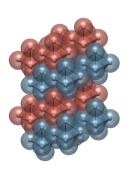
Fibrifold Space Group Notation





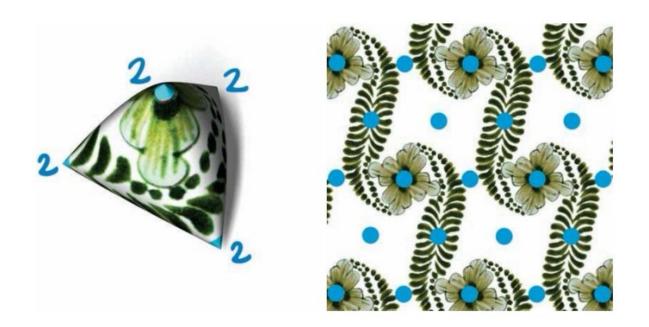
- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.





- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation
- "fibered orbifold" or a fibrifold
 - base space is orbifold: 2 2 2 2
 - fibre: S^1

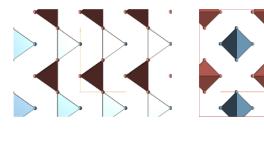
p2 orbifold signature: 2 2 2 2

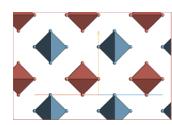


• Fibrifold name of space group is $P\overline{1}$ (2 2 2 2)

• Fibre-bundle whose base spaces and fibres are orbifolds:

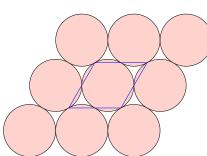
• There are at most three such non-isomorphic orbifold couplings in every space group.

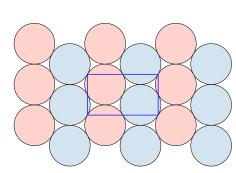




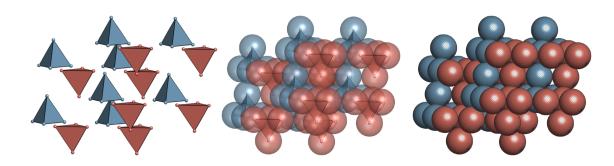
p2 packing

Fibrifold Space Group Notation

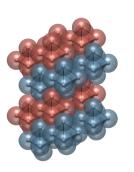


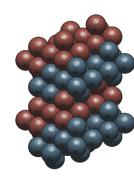


- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.



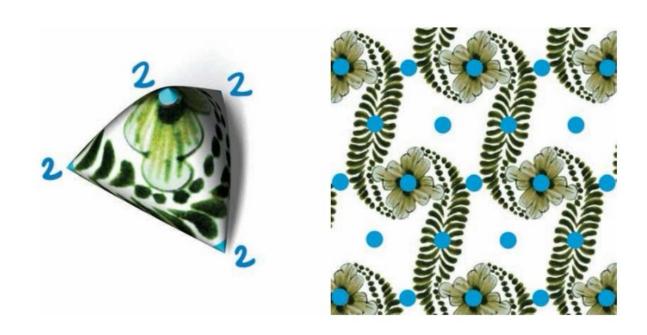






- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation
- "fibered orbifold" or a fibrifold
 - base space is orbifold: 2 2 2 2
 - fibre: S^1

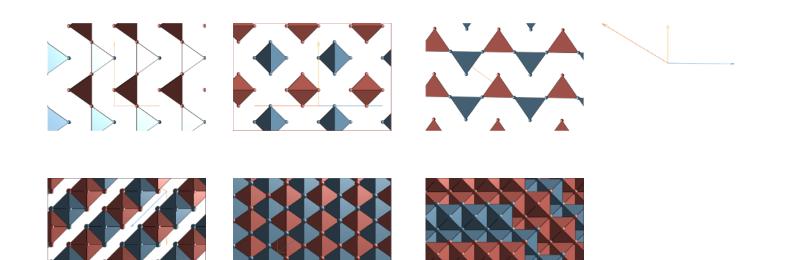
p2 orbifold signature: 2 2 2 2



• Fibrifold name of space group is $P\bar{1}$ (2 2 2 2)

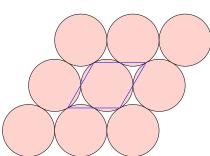
• Fibre-bundle whose base spaces and fibres are orbifolds:

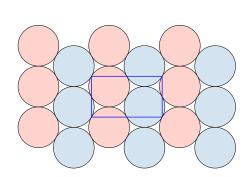
- There are at most three such non-isomorphic orbifold couplings in every space group.
- Symmetry of special projections in In the IUCr International Tables of Crystallography



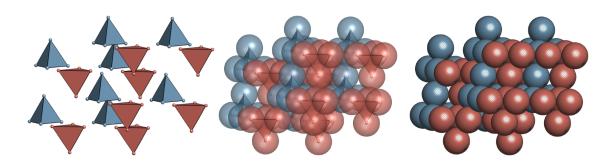
p2 packing

Fibrifold Space Group Notation

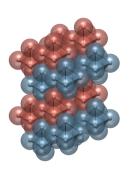


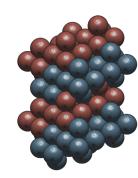


- Lattice points are centres of a 2-fold rotational symmetry.
- Centres of the discs of the lattice packing are centres of a 2-fold rotational symmetry.
- If we fold up this group by identifying the symmetry elements, we end up with
- a sphere S^2 with four nodes.
- Orbit-manifold, for short orbifolds, representation of the crystallographic plane group p2.



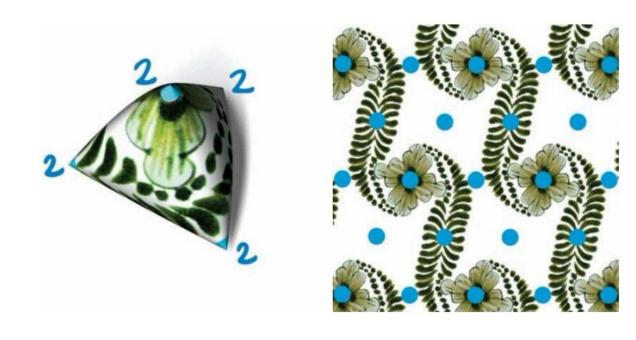






- Layers of 2 2 2 2 orbifolds
- Coupled by a lattice translation
- "fibered orbifold" or a fibrifold
 - base space is orbifold: 2 2 2 2
 - fibre: S^1

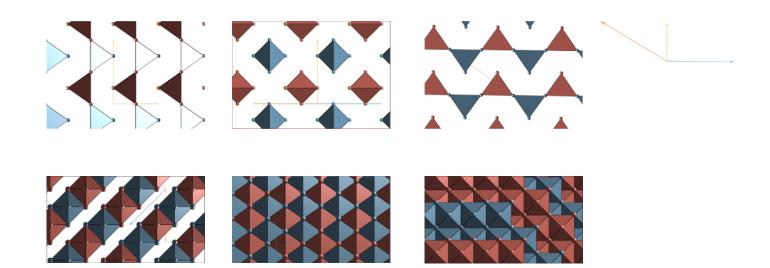
p2 orbifold signature: 2 2 2 2



• Fibrifold name of space group is $P\overline{1}$ (2 2 2 2)

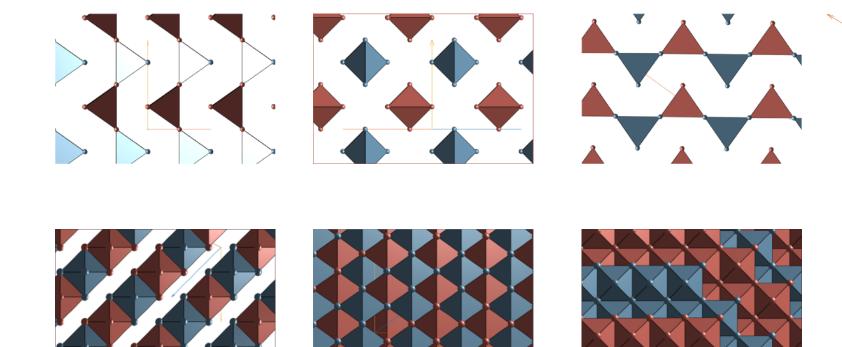
• Fibre-bundle whose base spaces and fibres are orbifolds:

- There are at most three such non-isomorphic orbifold couplings in every space group.
- Symmetry of special projections in In the IUCr International Tables of Crystallography
- $P\bar{1}$ | (2 2 2 2) symmetries of special projections are all 2 2 2 2

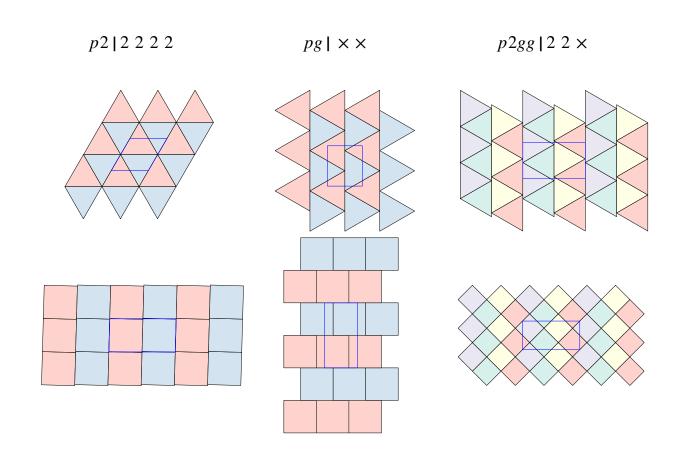


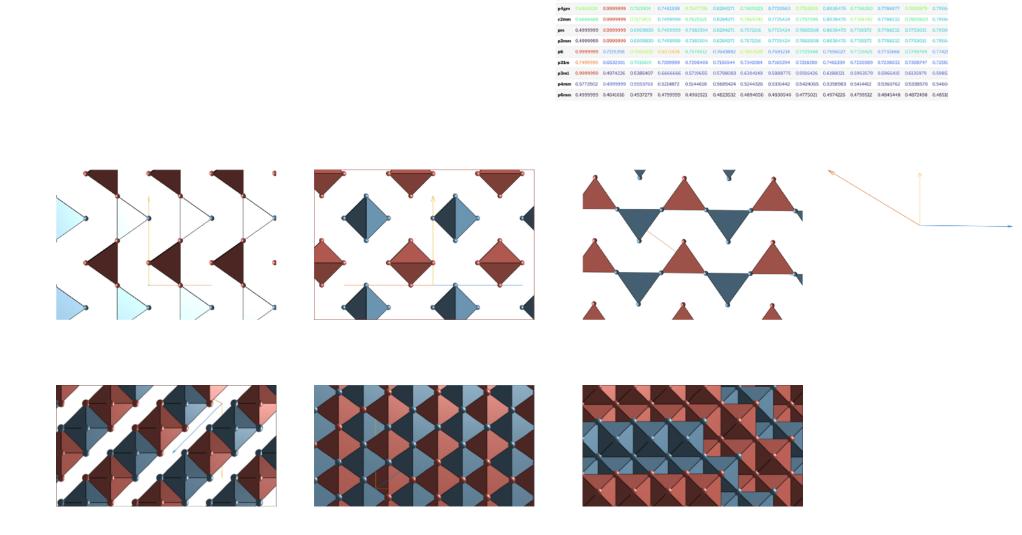
• Experimental analysis of symmetries of the densest packings of 34 regular polygons¹: https://milotorda.net/packings/

| Parameter | Para

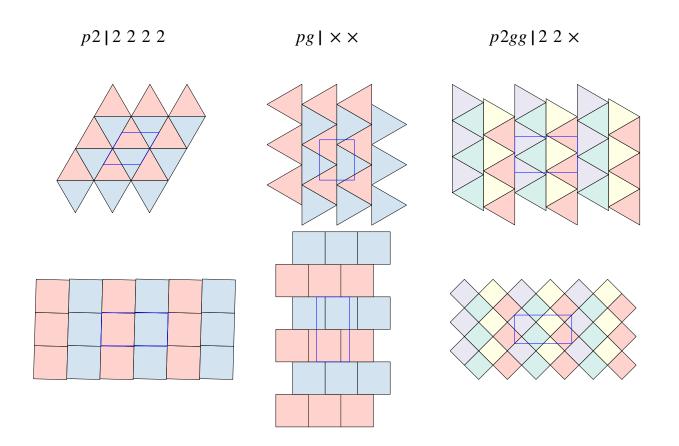


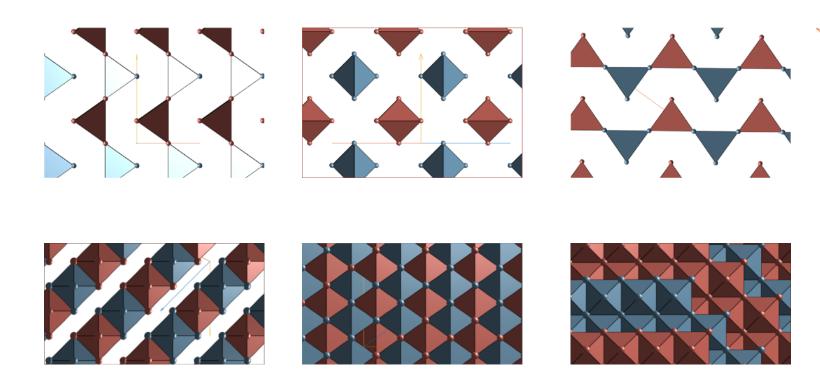
- Experimental analysis of symmetries of the densest packings of 34 regular polygons¹: https://milotorda.net/packings/
 - Regular n-gons attain the maximum packing density in wallpaper groups p2, pg and p2gg with orbifold names





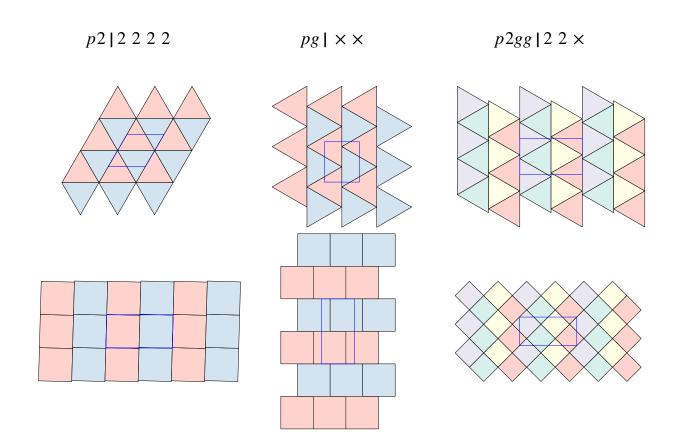
- Experimental analysis of symmetries of the densest packings of 34 regular polygons¹: https://milotorda.net/packings/
 - Regular n-gons attain the maximum packing density in wallpaper groups p2, pg and p2gg with orbifold names
 - Only three space groups having special projections a combination of these three orbifolds



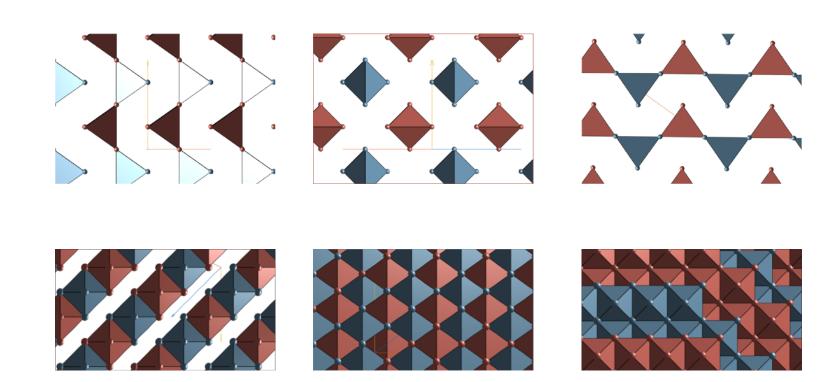


Symmetries of the $P ar{1} \mid (2222)$ Tetrahedral and Octahedral Molecule Packings								
Closest-Packed Space Groups Symmetries of Special Projections								
Н-М	Fibrifold (primary)	Н-М	Orbifold	Н-М	Orbifold	Н-М	Orbifold	
P Ī	(2 2 2 2)	<i>p</i> 2	2 2 2 2	<i>p</i> 2	2 2 2 2	p 2	2 2 2 2	
P 2 ₁	$(2_1 \ 2_1 \ 2_1 \ 2_1)$	<i>p</i> 2	2 2 2 2	pg	××	pg	××	
P 2 ₁ 2 ₁ 2 ₁	$(2_1 \ 2_1 \ \bar{\times})$	p 2g g	2 2 ×	p 2g g	2 2 ×	p 2g g	2 2 ×	

- Experimental analysis of symmetries of the densest packings of 34 regular polygons¹: https://milotorda.net/packings/
 - Regular n-gons attain the maximum packing density in wallpaper groups, and with orbifold names
 - Only three space groups having special projections a combination of these three orbifolds



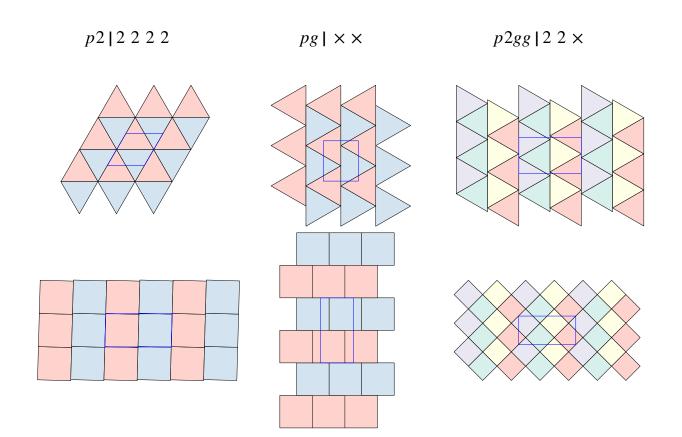
Are these the only symmetries of the tetrahedral molecular packing?



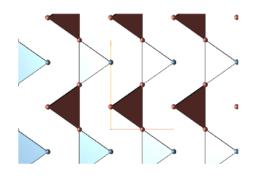
Symmetries of the $P ar{1} \mid (2222)$ Tetrahedral and Octahedral Molecule Packings									
Closest-Packed Space Groups Symmetries of Special Projections					tions				
Н-М	Fibrifold (primary)	Н-М	Orbifold	Н-М	Orbifold	Н-М	Orbifold		
P Ī	(2 2 2 2)	<i>p</i> 2	2 2 2 2	<i>p</i> 2	2 2 2 2	p 2	2 2 2 2		
P 2 ₁	$(2_1 \ 2_1 \ 2_1 \ 2_1)$	<i>p</i> 2	2 2 2 2	pg	××	pg	××		
$P2_{1}2_{1}2_{1}$	$(2_1 \ 2_1 \ \bar{\times})$	p 2g g	2 2 ×	p 2gg	2 2 ×	p 2g g	2 2 ×		

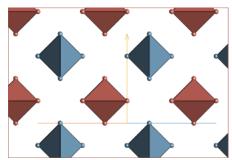
- Experimental analysis of symmetries of the densest packings of 34 regular polygons¹: https://milotorda.net/packings/
 - Regular n-gons attain the maximum packing density in wallpaper groups, and with orbifold names
 - Only three space groups having special projections a combination of these three orbifolds

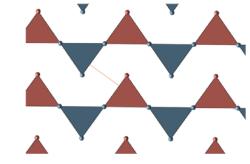
p2mg | 2 2 *

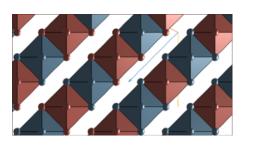


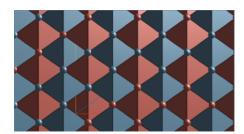
- Are these the only symmetries of the tetrahedral molecular packing?
 - All three special projections contain a mirror reflection.

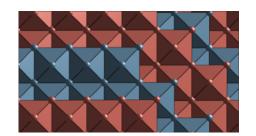


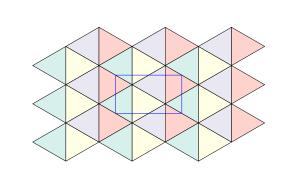


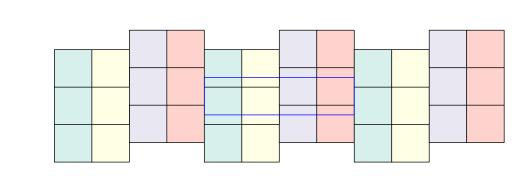








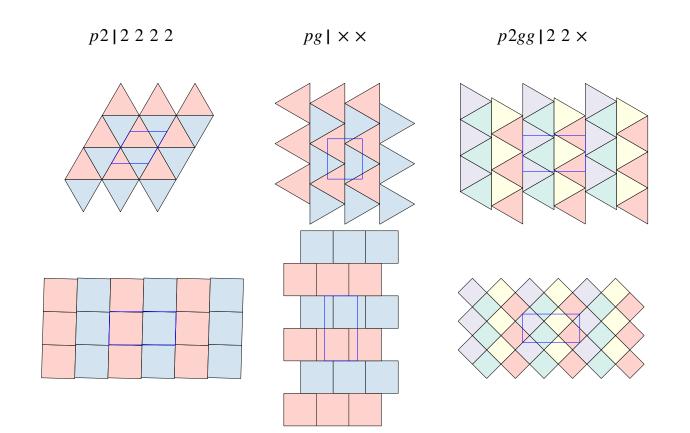




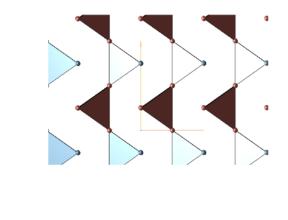
Symmetries of the $P\bar{1}$ (2222) Tetrahedral and Octahedral Molecule Packings								
Closest-Packed Space Groups		Symmetries of Special Projections						
Н-М	Fibrifold (primary)	Н-М	Orbifold	Н-М	Orbifold	Н-М	Orbifold	
$P\bar{1}$	(2 2 2 2)	<i>p</i> 2	2 2 2 2	p 2	2 2 2 2	p 2	2 2 2 2	
$P2_1$	$(2_1 \ 2_1 \ 2_1 \ 2_1)$	p2	2 2 2 2	pg	××	pg	××	
$P2_{1}2_{1}2_{1}$	$(2_1 \ 2_1 \ \bar{\times})$	p 2g g	2 2 ×	p2gg	2 2 ×	p 2g g	2 2 ×	
$P2_1/c$	$(2_1 \ 2_1 \ 2 \ 2)$	<i>p</i> 2	2 2 2 2	p 2m g	2 2 *	p 2g g	2 2 ×	
Pbca	$(2_1 \ 2^{\bar{*}}:)$	p2mg	2 2 *	p 2m g	2 2 *	p2mg	2 2 *	

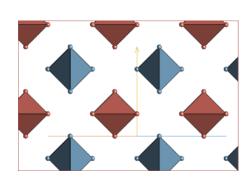
- Experimental analysis of symmetries of the densest packings of 34 regular polygons¹: https://milotorda.net/packings/
 - Regular n-gons attain the maximum packing density in wallpaper groups, and with orbifold names
 - Only three space groups having special projections a combination of these three orbifolds

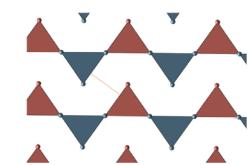
p2mg | 2 2 *

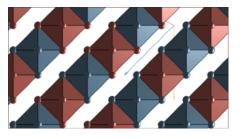


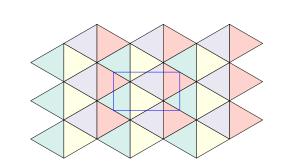
- Are these the only symmetries of the tetrahedral molecular packing?
 - All three special projections contain a mirror reflection.
- Are we done?

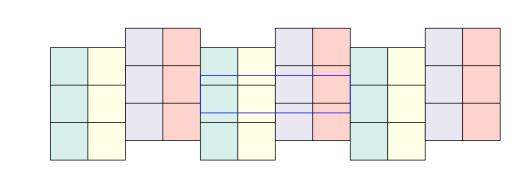








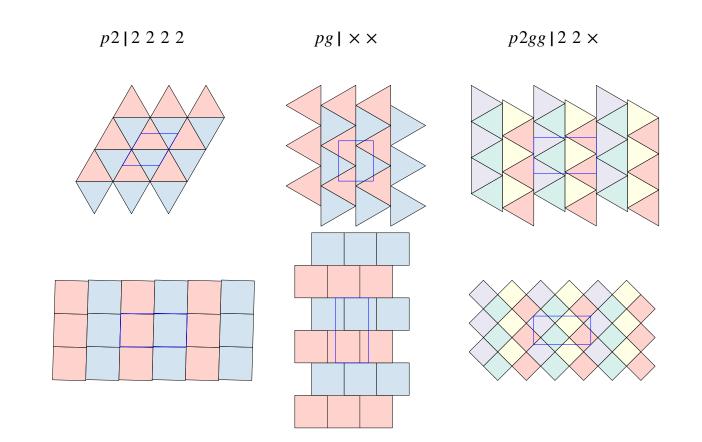




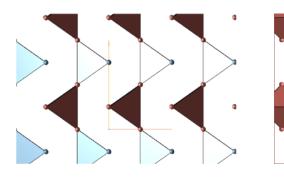
Symmetries of the $P\bar{1}$ (2222) Tetrahedral and Octahedral Molecule Packings									
Closest-Pag	cked Space Groups	Symmetries of Special Projections							
Н-М	Fibrifold (primary)	Н-М	Orbifold	Н-М	Orbifold	Н-М	Orbifold		
$P\bar{1}$	(2 2 2 2)	<i>p</i> 2	2 2 2 2	p 2	2 2 2 2	<i>p</i> 2	2 2 2 2		
$P2_1$	$(2_1 \ 2_1 \ 2_1 \ 2_1)$	<i>p</i> 2	2 2 2 2	pg	××	pg	××		
$P2_{1}2_{1}2_{1}$	$(2_1 \ 2_1 \ \bar{x})$	p 2g g	2 2 ×	p2gg	2 2 ×	p2gg	2 2 ×		
$P2_1/c$	$(2_1 \ 2_1 \ 2 \ 2)$	<i>p</i> 2	2 2 2 2	p 2m g	22*	p2gg	2 2 ×		
Pbca	$(2_1 \ 2^{\bar{*}}:)$	p2mg	2 2 *	p 2m g	2 2 *	p2mg	2 2 *		

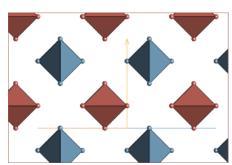
- Experimental analysis of symmetries of the densest packings of 34 regular polygons¹: https://milotorda.net/packings/
 - Regular n-gons attain the maximum packing density in wallpaper groups, and with orbifold names
 - Only three space groups having special projections a combination of these three orbifolds

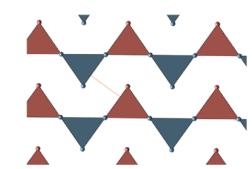
p2mg | 2 2 *



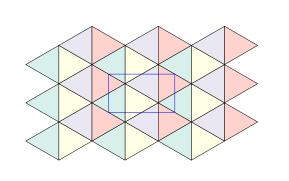
- Are these the only symmetries of the tetrahedral molecular packing?
 - All three special projections contain a mirror reflection.
- Are we done?

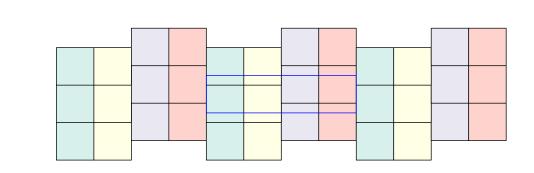




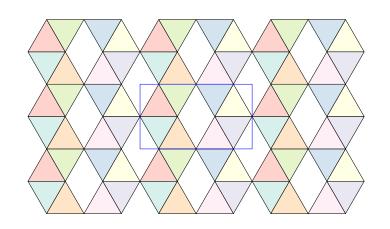


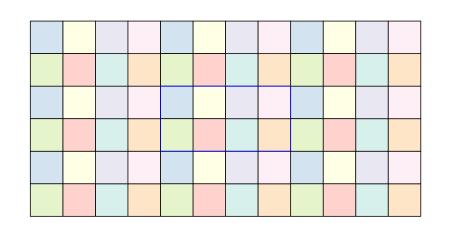






 $c2mm \mid 2*22$

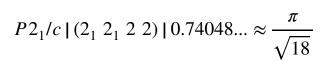




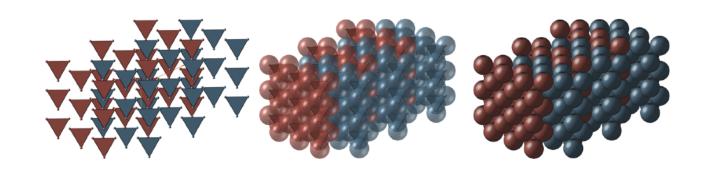
Symmetries of the $P\bar{1}$ (2222) Tetrahedral and Octahedral Molecule Packings									
Closest-Packed Space Groups		Symmetries of Special Projections							
Н-М	Fibrifold (primary)	Н-М	Orbifold	Н-М	Orbifold	Н-М	Orbifold		
$P\bar{1}$	(2 2 2 2)	<i>p</i> 2	2 2 2 2	<i>p</i> 2	2 2 2 2	p 2	2 2 2 2		
P 2 ₁	$(2_1 \ 2_1 \ 2_1 \ 2_1)$	<i>p</i> 2	2 2 2 2	pg	××	pg	××		
$P2_{1}2_{1}2_{1}$	$(2_1 \ 2_1 \ \bar{x})$	p 2g g	2 2 ×	p 2g g	2 2 ×	p 2g g	2 2 ×		
$P2_1/c$	$(2_1 \ 2_1 \ 2 \ 2)$	<i>p</i> 2	2 2 2 2	p 2m g	2 2 *	p 2g g	2 2 ×		
Pbca	$(2_1 \ 2^{\bar{*}}:)$	p2mg	2 2 *	p 2m g	2 2 *	p2mg	2 2 *		
C 2/c	$(2_0 \ 2_1 \ 2 \ 2)$	<i>p</i> 2	2 2 2 2	c 2m m	2*22	p2mg	2 2 *		

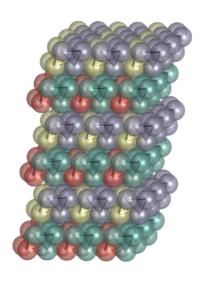
Densest $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca Tetrahedral Molecule Packings

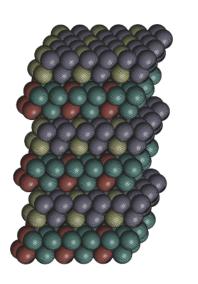
 $P2_1 \mid (2_1 \ 2_1 \ 2_1 \ 2_1) \mid 0.74048... \approx \frac{\pi}{\sqrt{18}}$

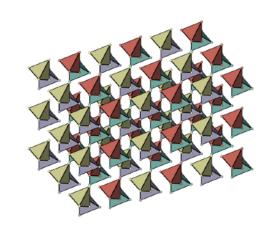


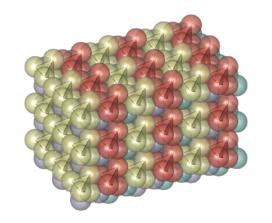
$$P2_12_12_1 \mid (2_1 \ 2_1 \ \bar{\mathsf{x}}) \mid 0.74048... \approx \frac{\pi}{\sqrt{18}}$$

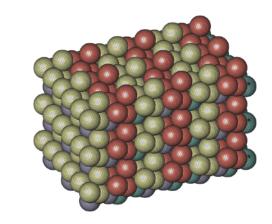




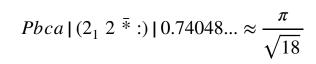


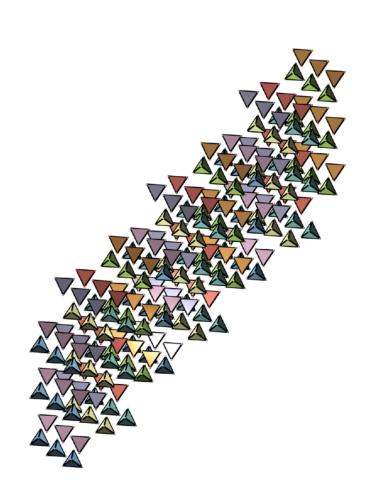


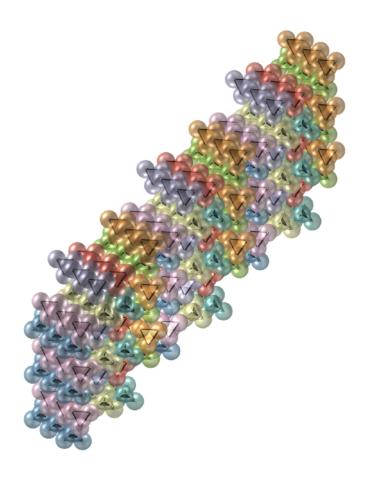


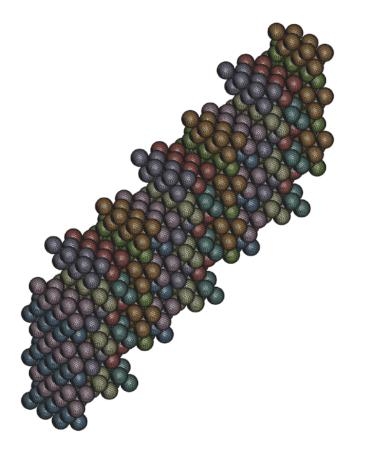


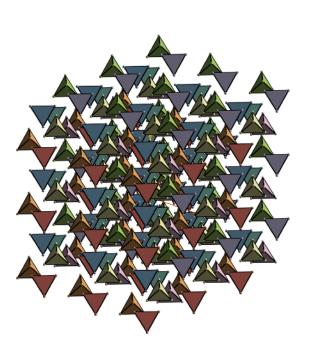
$$C2/c \mid (2_0 \ 2_1 \ 2 \ 2) \mid 0.74048... \approx \frac{\pi}{\sqrt{18}}$$

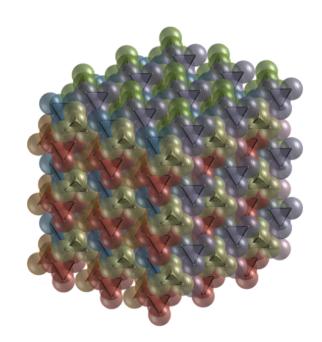


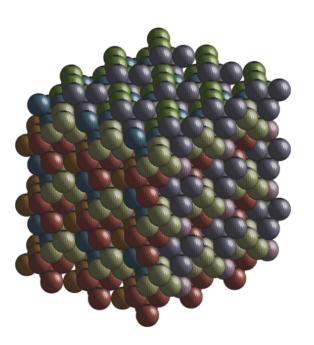






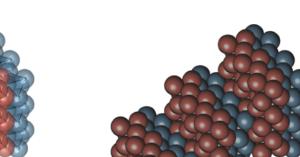


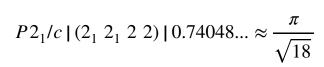


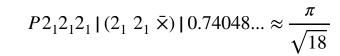


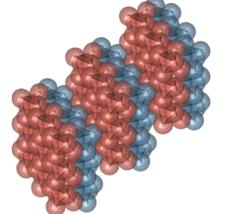
Densest $P2_1$, $P2_1/c$, C2/c , $P2_12_12_1$ and Pbca Octahedral Molecule Packings

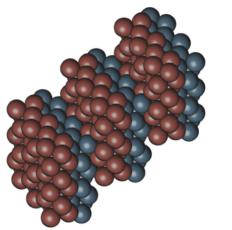
 $P2_1 \mid (2_1 \ 2_1 \ 2_1 \ 2_1) \mid 0.74048... \approx \frac{\pi}{\sqrt{18}}$

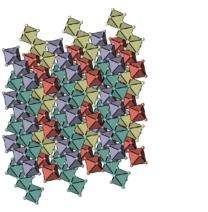


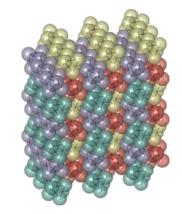


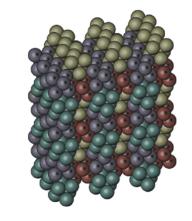


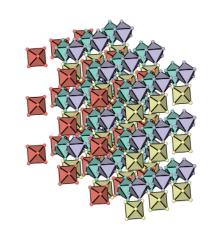


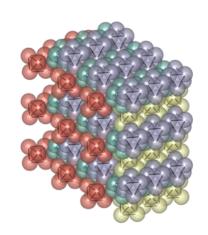


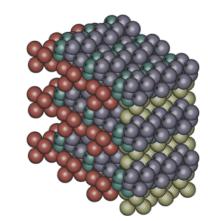






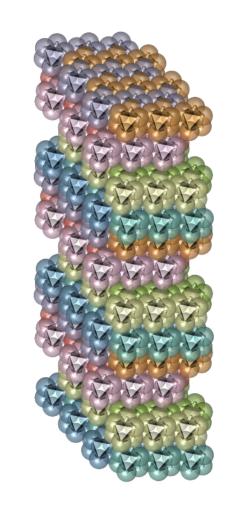


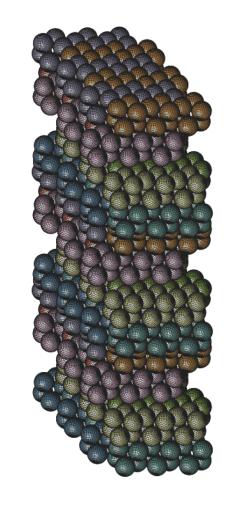


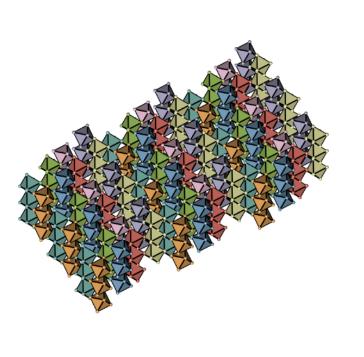


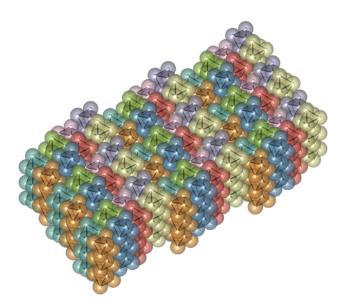
$$C2/c \mid (2_0 \ 2_1 \ 2 \ 2) \mid 0.74048... \approx \frac{\pi}{\sqrt{18}}$$

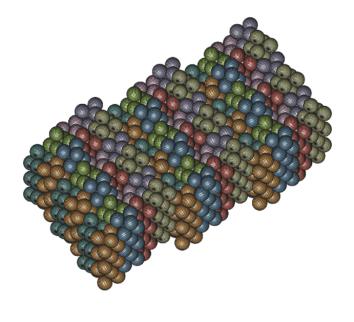
$$Pbca \mid (2_1 \ 2^{\bar{*}} :) \mid 0.74048... \approx \frac{\pi}{\sqrt{18}}$$



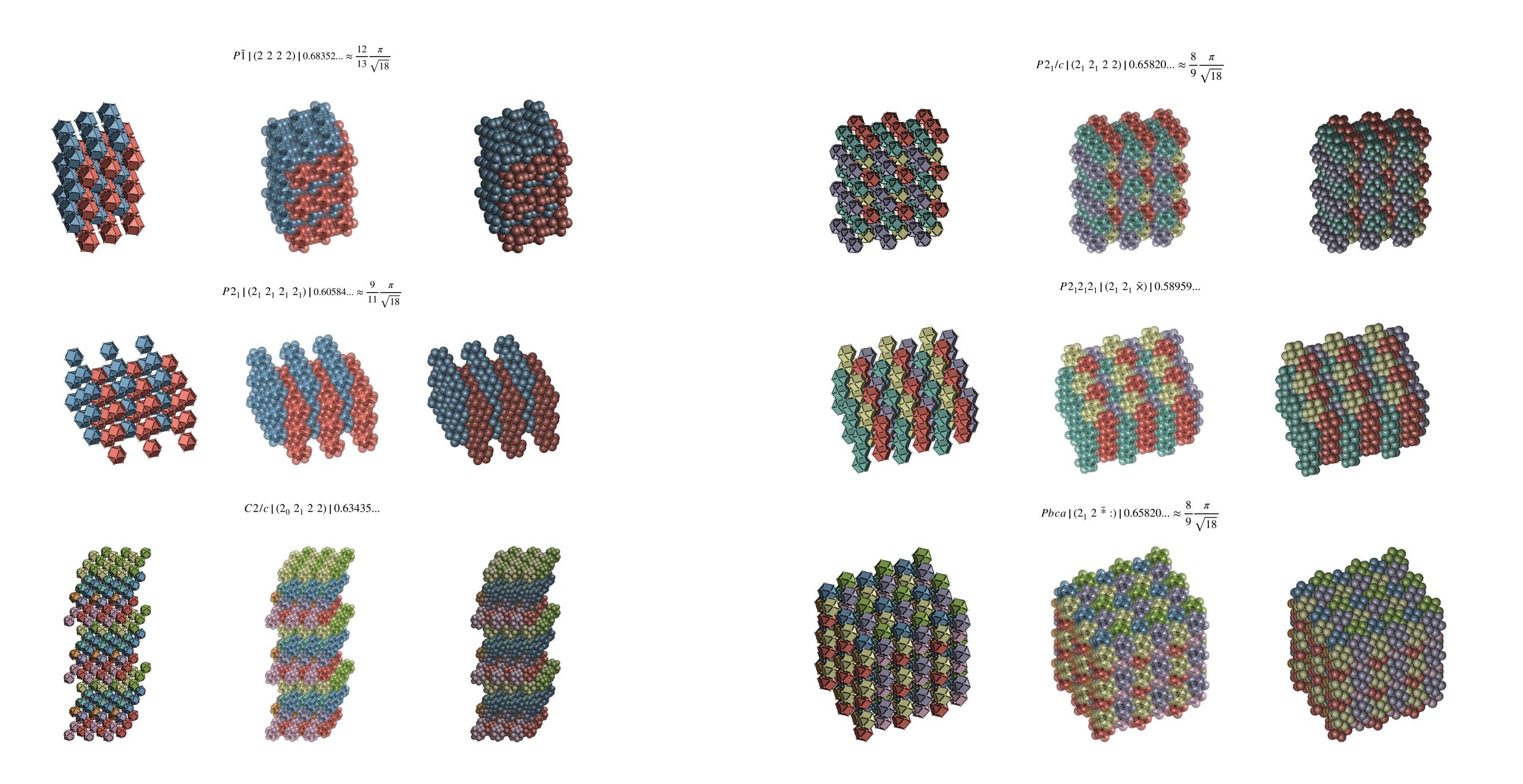








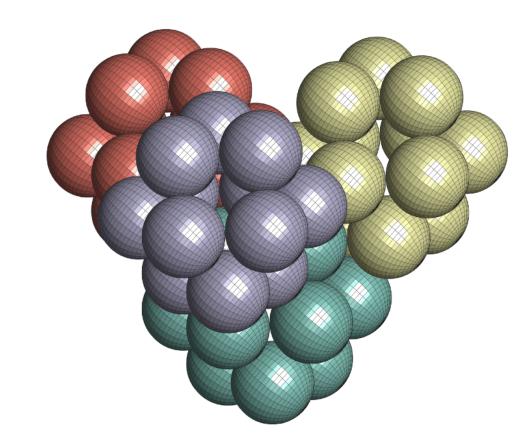
Densest $P\bar{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca Cuboctahedral Molecule Packings

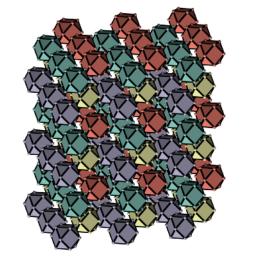


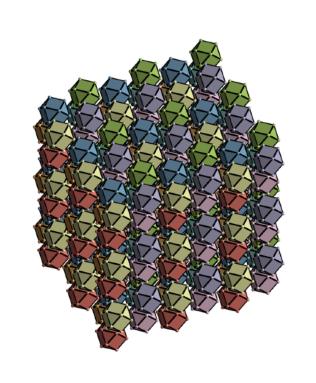
• Is the GEOMAG cuboctahedral molecule packing model the global packing density maximum?

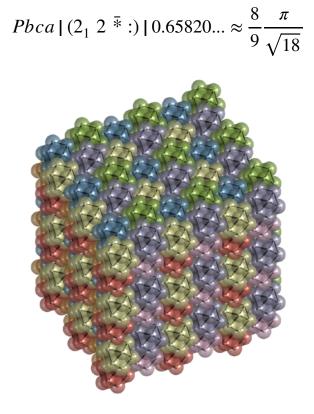
 $P2_1/c \mid (2_1 \ 2_1 \ 2 \ 2) \mid 0.65820... \approx \frac{8}{9} \frac{\pi}{\sqrt{18}}$

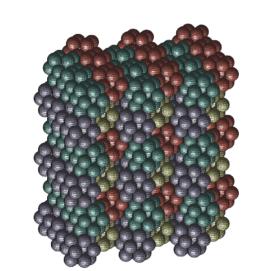
- Is the GEOMAG cuboctahedral molecule packing model the global packing density maximum?
- No. It is the second densest configuration.

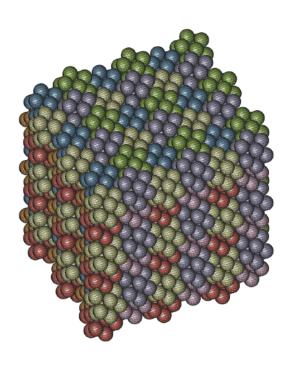




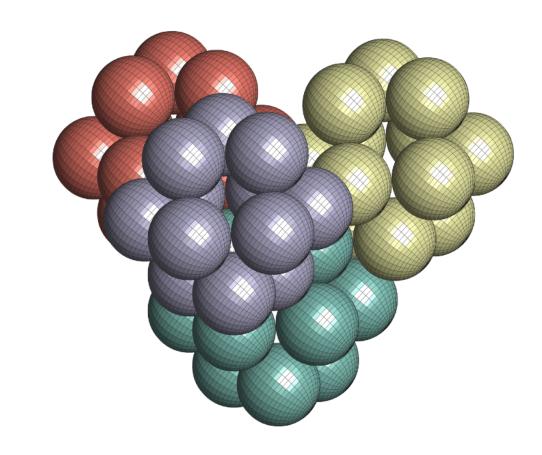


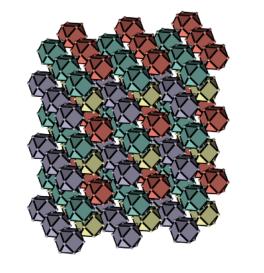


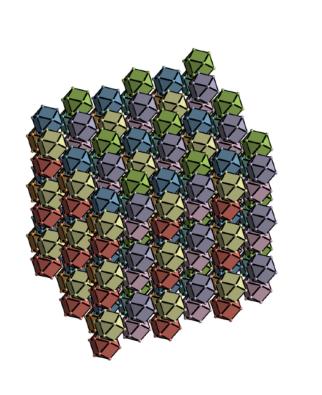


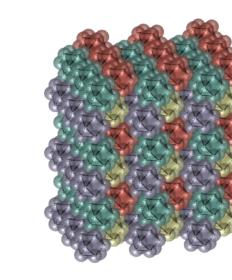


- Is the GEOMAG cuboctahedral molecule packing model the global packing density maximum?
- No. It is the second densest configuration.

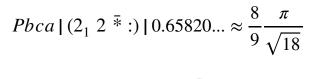


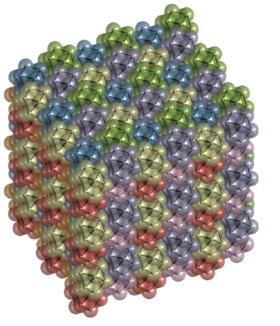


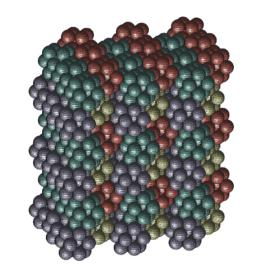


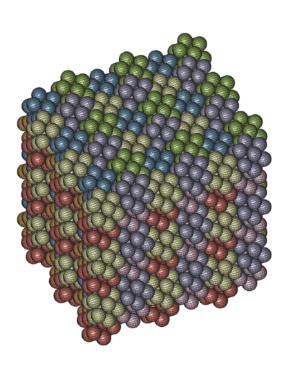


 $P2_1/c \mid (2_1 \ 2_1 \ 2 \ 2) \mid 0.65820... \approx \frac{8}{9} \frac{\pi}{\sqrt{18}}$

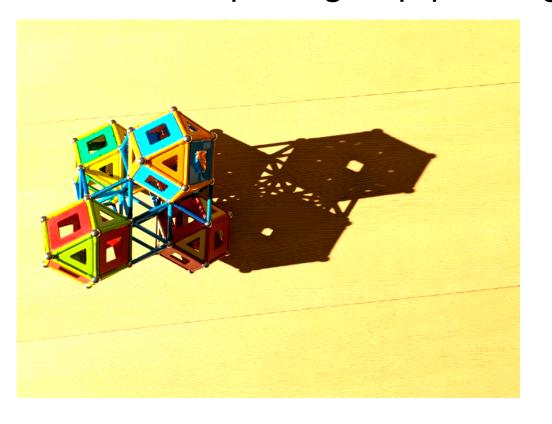


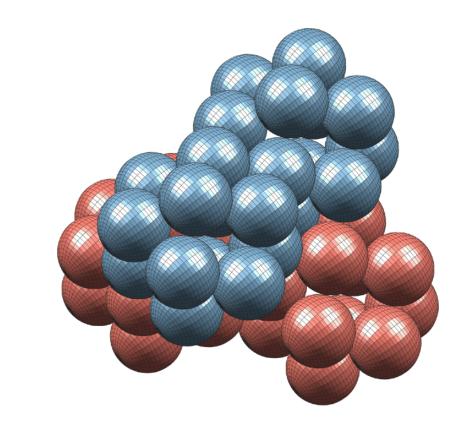


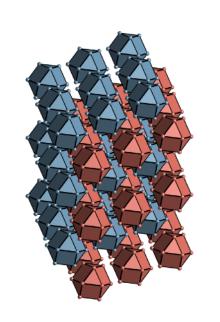


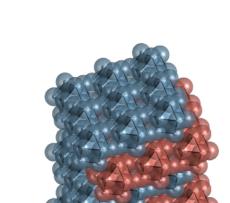


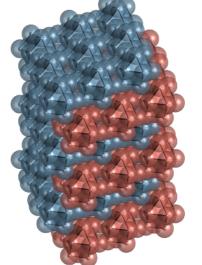
Densest space group packing



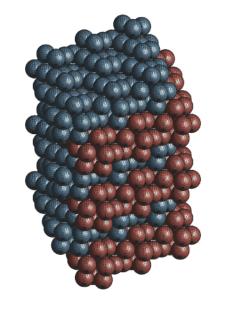






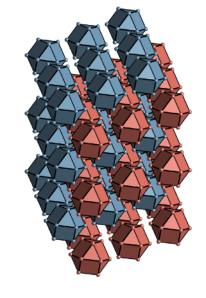


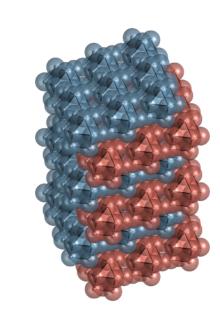
 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$

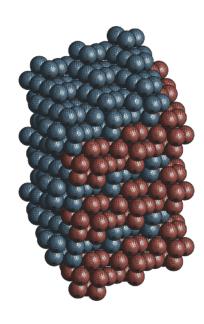


How do we know it is the global maximum?

 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$

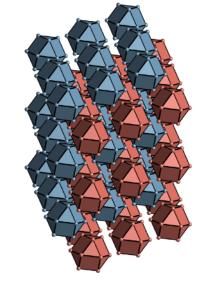


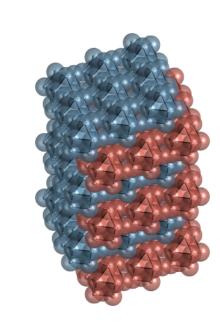


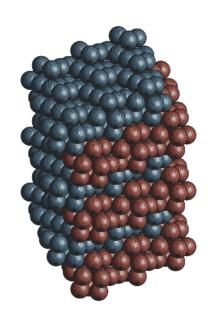


- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$

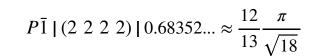


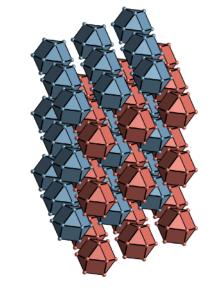


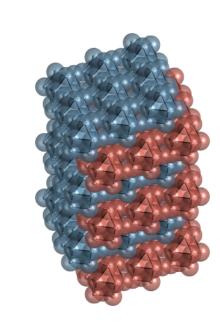


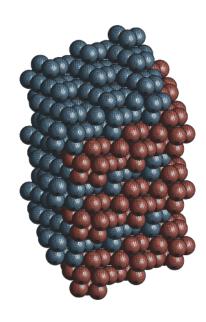
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

$$P1 \mid (\circ) \mid_{0.68352...} \approx \frac{12}{13} \frac{\pi}{\sqrt{18}} \qquad \text{with density } \frac{1}{13} \frac{\pi}{\sqrt{18}}$$



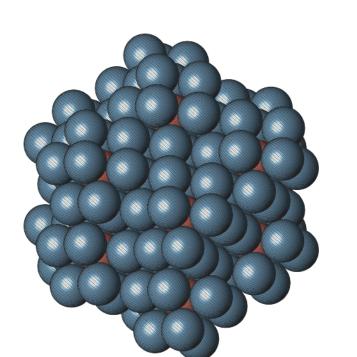




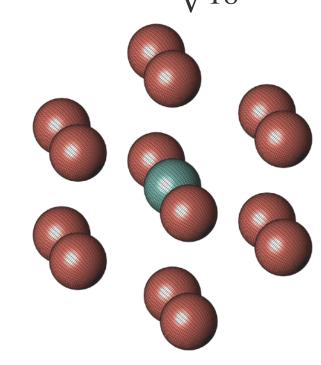


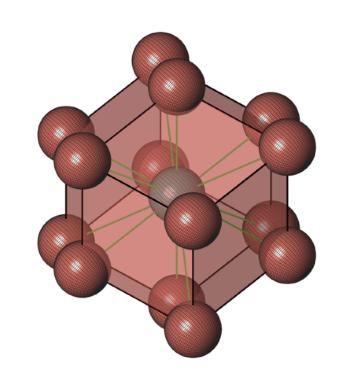
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

$$P1$$
 (\circ) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$

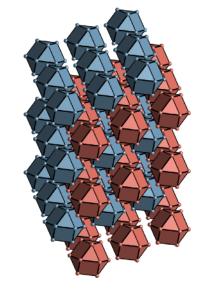


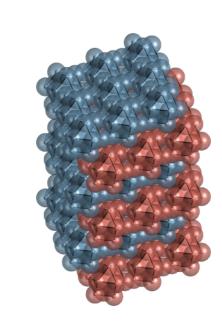
complementary packing with density $\frac{1}{13} \frac{\pi}{\sqrt{18}}$

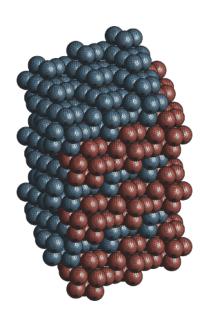




 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$





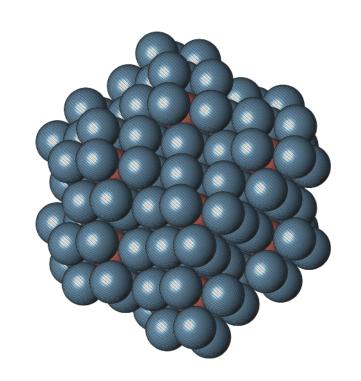


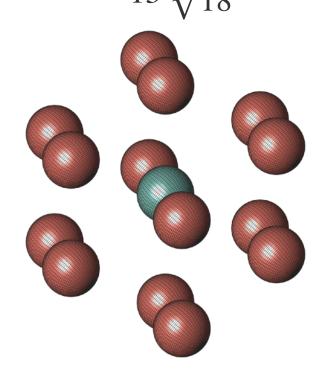
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

$$P1$$
 (•) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$

complementary packing with density $\frac{1}{13} \frac{\pi}{\sqrt{18}}$

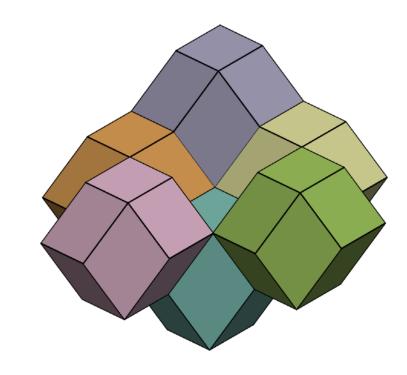
Vertices of a rhombic dodecahedron

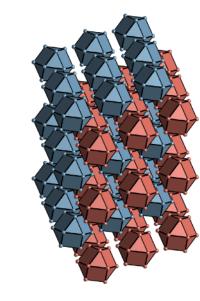




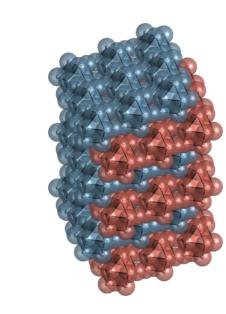


rhombic dodecahedral honeycomb





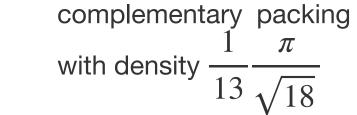
$$P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$$

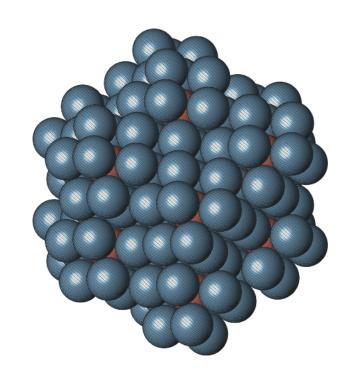


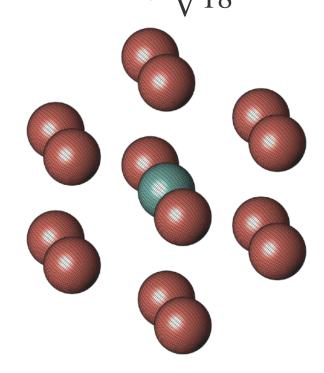


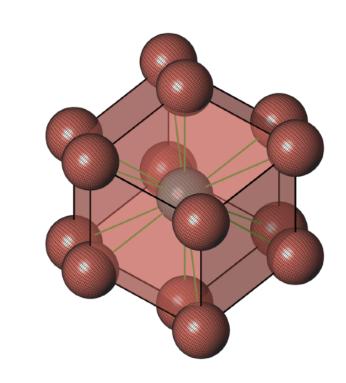
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

$$P1$$
 (\circ) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$





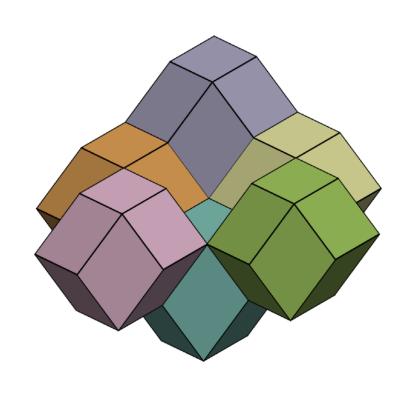


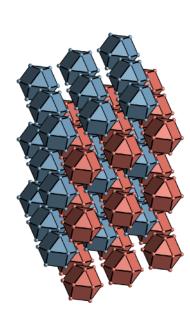


rhombic dodecahedral honeycomb

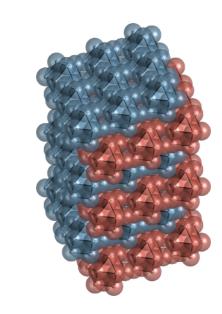
dual honeycomb

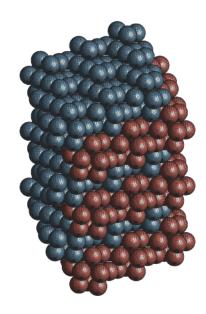
tetrahedral-octahedral honeycomb





 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



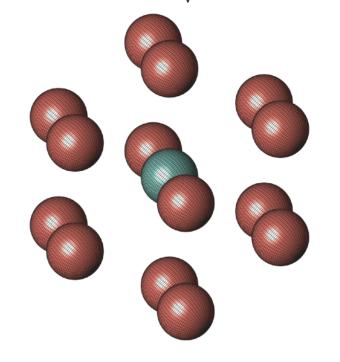


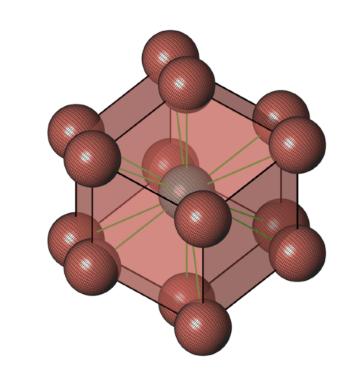
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

P1 (\circ) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$

complementary packing with density $\frac{1}{13} \frac{\pi}{\sqrt{18}}$

Vertices of a rhombic dodecahedron



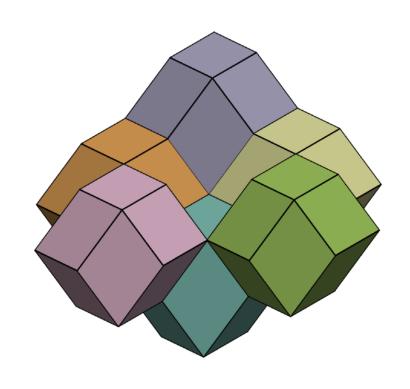


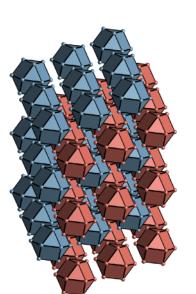
What is the takeaway?

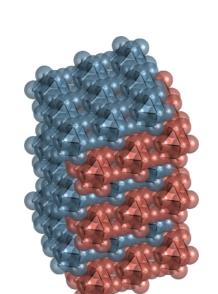
rhombic dodecahedral honeycomb

dual honeycomb

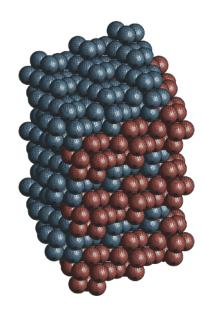
tetrahedral-octahedral honeycomb





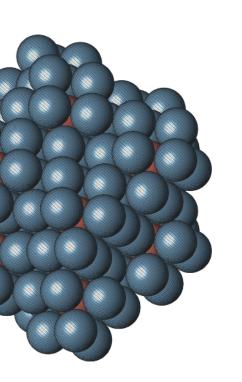


 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$

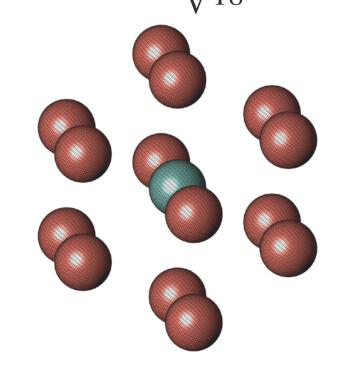


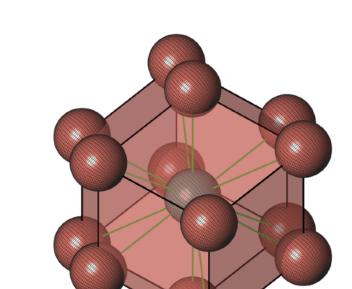
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

$$P1$$
 (\circ) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



complementary packing with density $\frac{1}{13} \frac{\pi}{\sqrt{18}}$



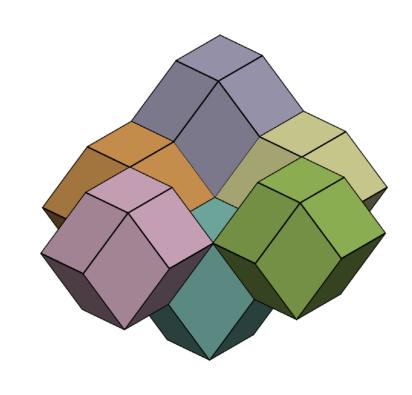


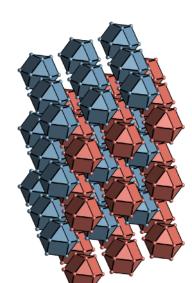
- What is the takeaway?
- Two levels of locally maximal close packing configurations:

rhombic dodecahedral honeycomb

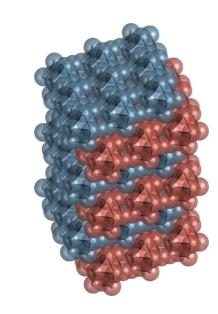
dual honeycomb

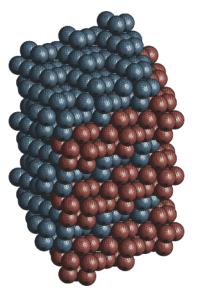
tetrahedral-octahedral honeycomb





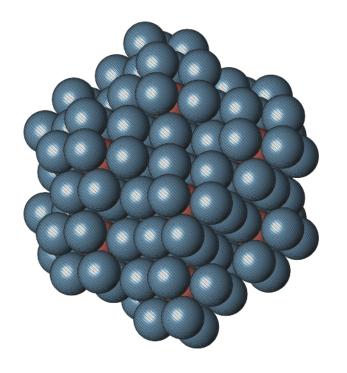
 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



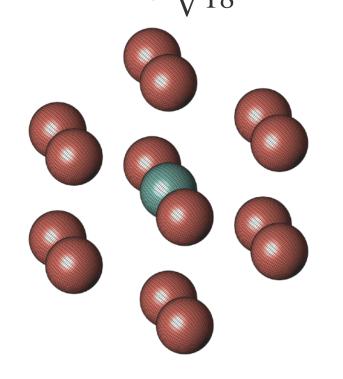


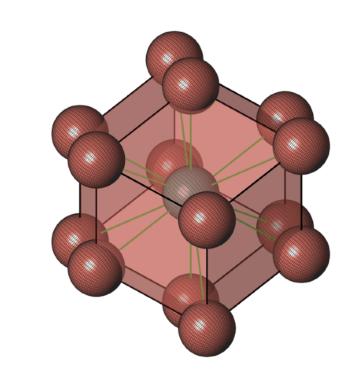
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

$$P1$$
 (\circ) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



complementary packing with density $\frac{1}{13} \frac{\pi}{\sqrt{18}}$



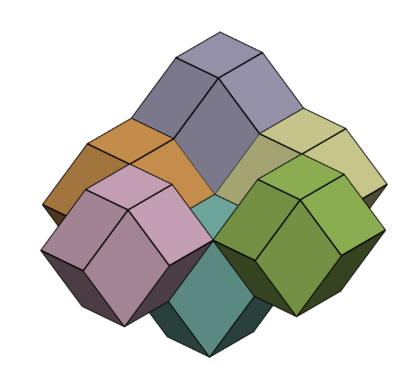


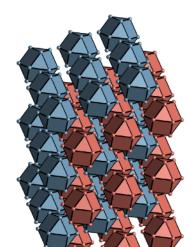
- What is the takeaway?
- Two levels of locally maximal close packing configurations:
 - 1. Atomic Locally maximal dense packings between atoms of different molecules, where each atom touches seven atoms from neighbouring molecules.

rhombic dodecahedral honeycomb

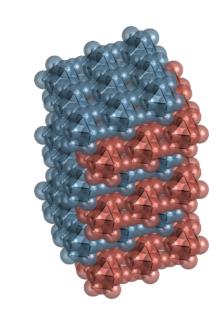
dual honeycomb

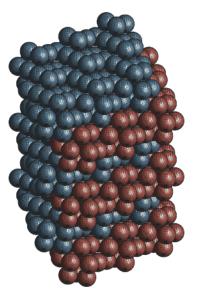
tetrahedral-octahedral honeycomb





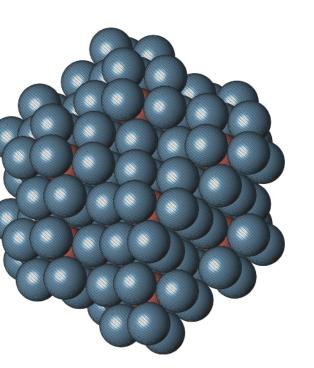
 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



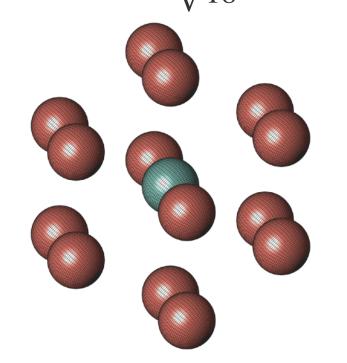


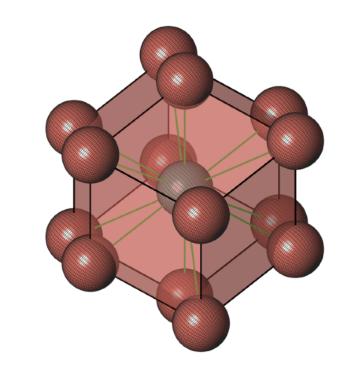
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

$$P1$$
 (\circ) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



complementary packing with density $\frac{1}{13} \frac{\pi}{\sqrt{18}}$



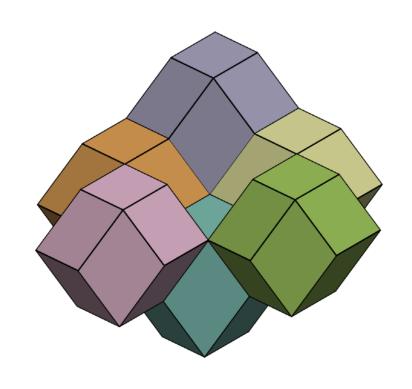


- What is the takeaway?
- Two levels of locally maximal close packing configurations:
 - 1. Atomic Locally maximal dense packings between atoms of different molecules, where each atom touches seven atoms from neighbouring molecules.
 - 2. Molecular Locally maximal dense packings between molecules, where each molecule touches 14 surrounding molecules, giving each molecule a molecular coordination number of 14.

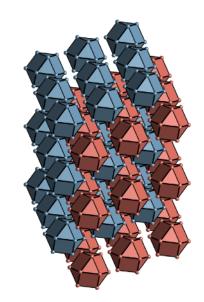
rhombic dodecahedral honeycomb

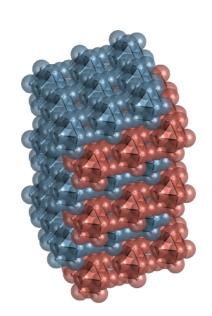
dual honeycomb

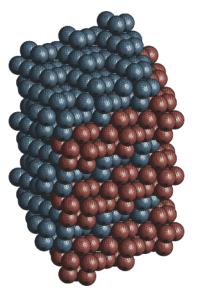
tetrahedral-octahedral honeycomb



 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



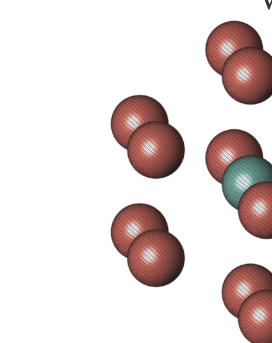




Global Cuboctahedral Molecule Packing Maximiser

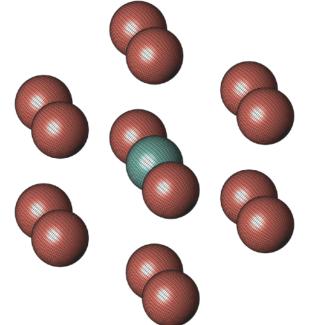
- How do we know it is the global maximum?
- By construction our cuboctahedral molecule model is a collection of equal spheres with centres on the twelve vertices of a cuboctahedron,

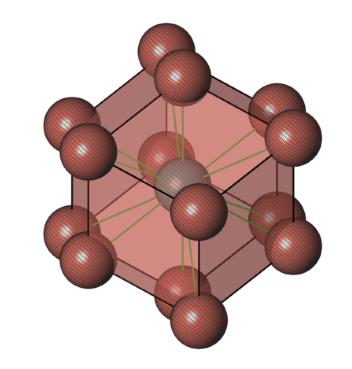
P1 (\circ) | $0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$



complementary packing with density $\frac{1}{13}$

Vertices of a rhombic dodecahedron

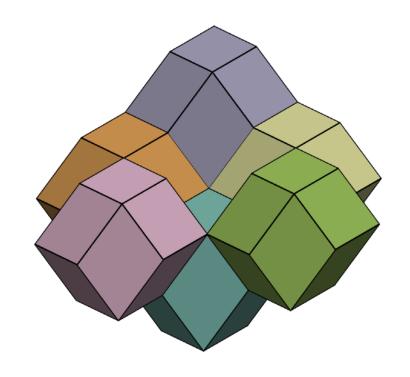




rhombic dodecahedral honeycomb

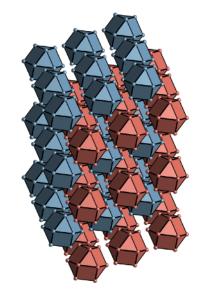
dual honeycomb

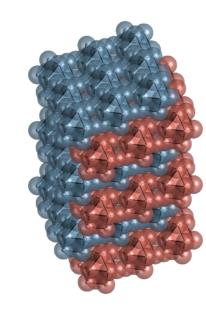
tetrahedral-octahedral honeycomb

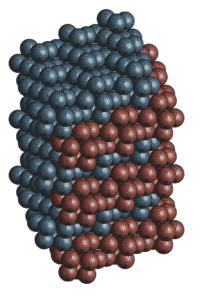


- What is the takeaway?
- Two levels of locally maximal close packing configurations:
 - 1. Atomic Locally maximal dense packings between atoms of different molecules, where each atom touches seven atoms from neighbouring molecules.
 - 2. Molecular Locally maximal dense packings between molecules, where each molecule touches 14 surrounding molecules, giving each molecule a molecular coordination number of 14.
- High atomic and molecular kissing / coordination numbers

 $P\bar{1} \mid (2\ 2\ 2\ 2) \mid 0.68352... \approx \frac{12}{13} \frac{\pi}{\sqrt{18}}$







• Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\overline{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\overline{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_1^2$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025

Cambridge Structural Database 1 January 2025

CSD Space Group Statistics - Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Сс	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\overline{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_1^2$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025
- Approximately 82.7% of the total 1,359,039 structures

Cambridge Structural Database 1 January 2025

CSD Space Group Statistics – Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Cc	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\overline{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025
- Approximately 82.7% of the total 1,359,039 structures
- $P\bar{1}$, $P2_1$, $P2_1/c$, $P2_12_1$ and Pbca centrosymmetric $\approx 75\%$ of the CSD in total

Cambridge Structural Database 1 January 2025

CSD Space Group Statistics – Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Cc	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9
			4.4.0=0	

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\bar{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025
- Approximately 82.7% of the total 1,359,039 structures
- $P\bar{1}$, $P2_1$, $P2_1/c$, $P2_12_1$ and Pbca centrosymmetric $\approx 75\%$ of the CSD in total
- This exactly the path A. I. Kitaigorodsky went:

Cambridge Structural Database 1 January 2025

CSD Space Group Statistics – Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

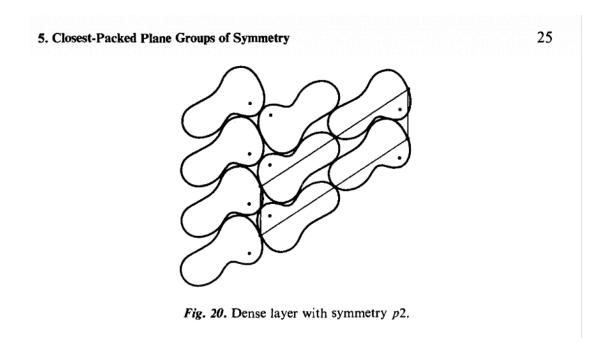
Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Сс	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9
			44.0=0	

Table 2

CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR ORGANIC CRYSTALS

Molecular symmetry in crystal	1	2	m	Ī	mm	2/ <i>m</i>	222	mmm
Closest-packed space groups	PĪ P2 ₁ P2 ₁ /c Pca Pna P2 ₁ 2 ₁ 2 ₁	none	none	PĪ P2 ₁ /c C2/c Pbca	none	none	none	none
Space groups of maximum density	none	C2/c P2 ₁ 2 ₁ 2 Pbcn	Pmc Cmc Pnma	none	Fmm Pmma Pmnn	C2/m Pbaa Cmca	C222 F222 I222 Ccca	Cmmm Fmmm Immm

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\bar{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025
- Approximately 82.7% of the total 1,359,039 structures
- $P\bar{1}$, $P2_1$, $P2_1/c$, $P2_12_1$ and Pbca centrosymmetric $\approx 75\%$ of the CSD in total
- This exactly the path A. I. Kitaigorodsky went:
- Using an abstract molecule model



Cambridge Structural Database 1 January 2025

CSD Space Group Statistics - Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

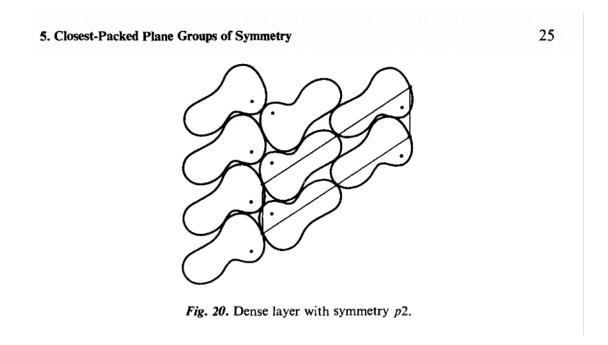
Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Сс	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9
			44.0=0	

Table 2

CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR ORGANIC CRYSTALS

Molecular symmetry in crystal	1	2	m	Ī	mm	2/ <i>m</i>	222	mmm
Closest-packed space groups	PĪ P2 ₁ P2 ₁ /c Pca Pna P2 ₁ 2 ₁ 2 ₁	none	none	PI P2 ₁ /c C2/c Pbca	none	none	none	none
Space groups of maximum density	none	C2/c P2 ₁ 2 ₁ 2 Pbcn	Pmc Cmc Pnma	none	Fmm Pmma Pmnn	C2/m Pbaa Cmca	C222 F222 I222 Ccca	Cmmm Fmmm Immm

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\bar{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025
- Approximately 82.7% of the total 1,359,039 structures
- $P\bar{1}$, $P2_1$, $P2_1/c$, $P2_12_1$ and Pbca centrosymmetric $\approx 75\%$ of the CSD in total
- This exactly the path A. I. Kitaigorodsky went:
- Using an abstract molecule model
 - 1. analysed possible plane group symmetries of closest-packed layers



Cambridge Structural Database 1 January 2025

CSD Space Group Statistics – Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

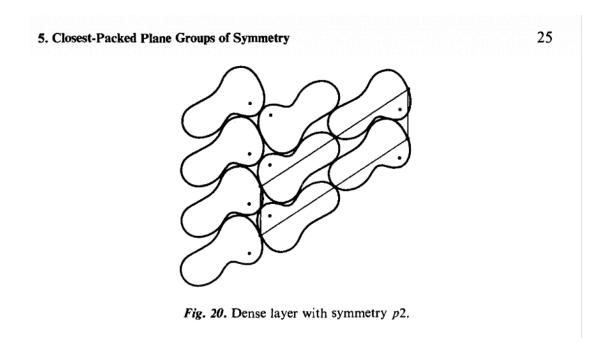
Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Сс	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9
		D i	44.0-0	

Table 2

CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR ORGANIC CRYSTALS

Molecular symmetry in crystal	1	2	m	Ī	mm	2/ <i>m</i>	222	mmm
Closest-packed space groups	PĪ P2 ₁ P2 ₁ /c Pca Pna P2 ₁ 2 ₁ 2 ₁	none	none	PĪ P2 ₁ /c C2/c Pbca	none	none	none	none
Space groups of maximum density	none	C2/c P2 ₁ 2 ₁ 2 Pbcn	Pmc Cmc Pnma	none	Fmm Pmma Pmnn	C2/m Pbaa Cmca	C222 F222 I222 Ccca	Cmmm Fmmm Immm

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\bar{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025
- Approximately 82.7% of the total 1,359,039 structures
- $P\bar{1}$, $P2_1$, $P2_1/c$, $P2_12_1$ and Pbca centrosymmetric $\approx 75\%$ of the CSD in total
- This exactly the path A. I. Kitaigorodsky went:
- Using an abstract molecule model
 - 1. analysed possible plane group symmetries of closest-packed layers
 - 2. estimated space groups for close packing of molecules by stacking of closest-packed layers



Cambridge Structural Database 1 January 2025

CSD Space Group Statistics – Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Cc	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9
4.0		5	44.0-0	

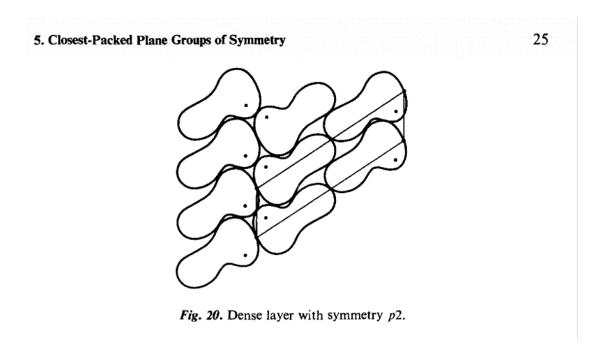
Table 2

CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR ORGANIC CRYSTALS

Molecular symmetry in crystal	1	2	m	Ī	mm	2/ <i>m</i>	222	mmm
Closest-packed space groups	PĪ P2 ₁ P2 ₁ /c Pca Pna P2 ₁ 2 ₁ 2 ₁	none	none	PI P2 ₁ /c C2/c Pbca	none	none	none	none
Space groups of maximum density	none	C2/c P2 ₁ 2 ₁ 2 Pbcn	Pmc Cmc Pnma	none	Fmm Pmma Pmnn	C2/m Pbaa Cmca	C222 F222 I222 Ccca	Cmmm Fmmm Immm

- Relatively low-symmetry subgroups of the space group $Fm\bar{3}m$
- Full symmetry of the face-centred cubic lattice
- 48 elements modulo lattice translations
- Maximum of 8 for $P\overline{1}$, $P2_1$, $P2_1/c$, C2/c, $P2_12_12_1$ and Pbca
- Six most frequent space groups in the Cambridge Structural Database as of 1 January 2025
- Approximately 82.7% of the total 1,359,039 structures
- $P\bar{1}$, $P2_1$, $P2_1/c$, $P2_12_1$ and Pbca centrosymmetric $\approx 75\%$ of the CSD in total
- This exactly the path A. I. Kitaigorodsky went:
- Using an abstract molecule model
 - 1. analysed possible plane group symmetries of closest-packed layers
 - 2. estimated space groups for close packing of molecules by stacking of closest-packed layers

For molecules with tetrahedral symmetry T_d , the closest packing is attainable in space group $P\bar{1}$.



Cambridge Structural Database 1 January 2025

CSD Space Group Statistics – Space Group Frequency Ordering

Space group frequency ranking for the 1,359,039 CSD structures for which the space group is fully defined. Statistics for enantiomorphous space groups are as reported in the CSD. 1,063,306 (78 %) structures adopt centrosymmetric space groups, 295,733 (22 %) adopt non-centrosymmetric space groups, and 222,854 (16 %) structures adopt Sohncke space groups.

Rank	SG No.	Space Group	No. in CSD	% of CSD
1	14	P21/c	461,012	33.9
2	2	P-1	342,599	25.2
3	15	C2/c	111,611	8.2
4	19	P212121	94,716	7.0
5	4	P21	70,852	5.2
6	61	Pbca	43,301	3.2
7	33	Pna21	18,451	1.4
8	9	Сс	14,143	1.0
9	1	P1	13,692	1.0
10	62	Pnma	13,434	1.0
11	5	C2	11,764	0.9
			44.0=0	

Table 2

CLOSEST-PACKED SPACE GROUPS AND SPACE GROUPS OF MAXIMUM DENSITY FOR ORGANIC CRYSTALS

Molecular symmetry in crystal	1	2	m	Ī	mm	2/ <i>m</i>	222	mmm	T
Closest-packed space groups	PĪ P2 ₁ P2 ₁ /c Pca Pna P2 ₁ 2 ₁ 2 ₁	none	none	PI P2 ₁ /c C2/c Pbca	none	none	none	none	P
Space groups of maximum density	none	C2/c P2 ₁ 2 ₁ 2 Pbcn	Pmc Cmc Pnma	none	Fmm Pmma Pmnn	C2/m Pbaa Cmca	C222 F222 I222 Ccca	Cmmm Fmmm Immm	

The Leverhulme Research Centre for Functional Materials Design

Andy Cooper (University of Liverpool) Xenophon Evangelopoulos (University of Liverpool)

THANK YOU

Imperial College London

The Leverhulme Research Centre for Functional Materials Design

Andy Cooper (University of Liverpool) Xenophon Evangelopoulos (University of Liverpool)

THANK YOU

Roland Púček (Ruhr University, Bochum)

Imperial College London

The Leverhulme Research Centre for Functional Materials Design

Andy Cooper (University of Liverpool) Xenophon Evangelopoulos (University of Liverpool)

THANK YOU

milotorda.net

Roland Púček (Ruhr University, Bochum)

Vitaliy Kurlin (University of Liverpool) Graeme M. Day (University of Southampton)

Imperial College London

