
Correction of the Search Gradient Respecting Feasibility Maps
• Repairing the unfeasible configurations slightly shifts the underlying probability distribution from 

 to  
• Entropic Trust Region Search Gradient correction:

1. Transfer  to the tangent space  using the parallel transport map

along the curve  from  to . Since  is dually flat, the parallel transport  is independent of the choice of . 

2.  Adjust  by  to align  with the Feasibility Map. 

• Additionally, we introduce a tournament selection to increase competition within the packing 
population by merging the  configurations found in previous iterations with the repaired 
configurations from the current iteration.

• Final form of the search gradient respecting feasibility map transformations:
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•  - Closed Subset of 
•  - Crystallographic Space Group
•  - Unit cell.
•  - Number of elements of factor group  where  is the lattice subgroup of .
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where  is the Geometric Packing Density.ρ (𝒦G) =
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vol(U)

where  is the natural gradient of the expected 
fitness .

•  : Standard (Euclidean) gradient with respect to the
  Natural parametrization .

 Expectation parametrization of  dual to .

 Expectation parametrization of truncated probability
distribution derived from the -th -quantile of the 
fitness  denoted .
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Entropic Trust Region Packing Algorithm²
• Stochastic relaxation: 

•  - Expected fitness

•  - Fitness of a packing configuration
•  - Configuration space
•  - Statistical manifold with a dually flat 

Riemannian structure parametrized by .
•  - Extended Multivariate von Mises distributed probability measure

θ̃ = argmaxθ∈ΘJ(θ)

J(θ) := E[F |θ] = ∫x∈𝒳
F(x)dP(θ)

F
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• Rank 1 structure attained at ~ 7.5 min

Visualization of the packing match to the CSP lowest 
energy structure (Left) A single unit cell displayed in a 
space-filling representation, where colors indicate 
symmetry operations modulo lattice translations. (Middle 
and right) Overlay in a wireframe representation: the global 
energy minimum (blue) and the matching packing (red). 
(Middle) Asymmetric unit of the configuration; (right) a 15-
molecule cluster.

• Rank 2 structure attained at ~ 1.25 min

Reference Comparison Molecules in Common RMS ρ

HOHLAR Rank 1 9 out of 30 0.430 0.7468

HOHLAR Rank 2 3 out of 30 0.148 0.7432

HOHLAR Rank 3 30 out of 30 0.802 0.7412

Geometric Modeling in the Prediction of Molecular Crystal Structures 
The Close-Packing Principle Revisited

Histograms of projections along (Top) , 
(middle)  and (bottom)  coordinates 
of 100’000 samples generated from the 
trivariate Extended Multivariate von 
Mises Distribution.
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Reference Comparison Molecules in Common RMS ρ

SIZZUW Rank 1 30 out of 30 0.665 0.7670

SIZZUW Rank 2 5 out of 30 1.380 0.7472

SIZZUW Rank 3 6 out of 30 2.211 0.7451

Reference Comparison Molecules in Common RMS ρ

BDEHAN Rank 1 1 out of 30 0.000 0.7604

BDEHAN Rank 2 30 out of 30 0.641 0.7430

BDEHAN Rank 3 2 out of 30 0.180 0.7406

Reference Comparison Molecules in Common RMS ρ

MCYPDE Rank 1 30 out of 30 0.247 0.7584

MCYPDE Rank 2 8 out of 30 1.790 0.7514

MCYPDE Rank 3 10 out of 30 0.756 0.7510
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• We map every sampled configuration to a configuration
without any constraint violation through the following 
deformation of the unit cell :U

and solve the program via Sequential-Quadratic Programming.

• Additionally given a set of feasible configurations  where ,  
for each -th decile  we define the following non-linear program

S1, S2, …, Sn vol(USi) ≤ vol(USj) | i < j
k S⌈k n
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subject to  the non-overlap constraints
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1000 realizations of the Extended 
Multivariate von Mises distribution 
defined on an 9-dimensional torus from a 
single run of the Entropic Trust Region 
Packing Algorithm applied to the 
packings of the unit sphere in space 
group . (Left) Initial distribution and 
(right) output distribution.

P1

• Rank 1 structure attained at ~ 15 min

BDEHAN - Space Group P2₁/c

• Rank 3 structure attained at ~ 30 min

SIZZUW - Space Group C2/c

Supplementary Materials 
https://milotorda.net/lrc-symposium-supplementary-materials/

HOHLAR - Space Group P1 ̅
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Visualization of the Extended Multivariate von Mises 
distribution defined on an 9-dimensional torus at 
iteration  and parametrized by  . (Left) The original 
distribution at point ; (middle) the shifted 
distribution at point , obtained by feasibility 
maps from ; (right) the distribution at point 

, resu l t ing f rom merg ing N-best 
configurations from tournament selection for all  

 with the repaired configurations from  
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• Solution to the relaxed problem is a non-euclidean trust region 
search with the update equations

θt+1 = θt + Δt ∇̃ J(θt)
∥ ∇̃ J(θt) ∥ℐθt

Rank 1
Rank 2

Rank 3

Visualization of the MCYPDE 
packing maximization run for the 
space group P2₁ (Left) Maximum 
packing density; (middle) average 
packing density of N-best packings 
at  iteration; (right) distribution 
of the packing generation at the  

 iteration. See Supplementary 
Materials for animation of the entire 
run.
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MCYPDE - Space Group P2₁

3.Towards Efficient Ground State Prediction of Molecular Crystals
• Selected four benchmarking structures from the ‘Dataset: CSP-generated crystal structures of 

1,000+ rigid organic molecules’³
• The global energy minimum structure is also Global molecular density maximum structure.
• CSP computations were performed on ARCHER2, the UK National Supercomputing Service.

• Close-Packing searches were performed on a MacBook Pro with a M2 Max SoC.
• Total Number of Cores: 12 (8 performance and 4 efficiency)

• Structural comparisons were conducted using CSD software’s implementation of COMPACK⁴.
• Structure ranking is given by Geometric Packing Density.

• Rank i structure is the is the i-th densest packing such that there is no structural match between Rank i and 
Rank j for all .j = i − 1,i − 2,…,1

A packing where  is of type and K is 
the unit sphere. (Top left) a single unit cell 
and (top right) eight unit cells. (Bottom) 
densest  packing packing of the unit 
sphere with packing density of .

G P1̄

P1̄
π

18

Towards Efficient Ground State Prediction of Molecular Crystals  
Crystal Structure Prediction (CSP) is a critical tool in materials science, but its reliance on 
computationally intensive molecular quantum chemistry calculations makes it slow and difficult to 
scale. This bottleneck hinders rapid materials discovery, especially for autonomous labs. 

Kitaigorodsky’s Close-Packing Principle  
“The mutual arrangement of the molecules in a crystal is always such that the ‘projections’ of one 
molecule fit into the ‘hollows’ of adjacent molecules.”¹

Fibre-Orbifold-Constrained Programming  
We present a geometry-driven bias for crystal structure prediction that uses close-packing as a 
universal prior, sharply reducing search space and compute.

Miloslav Torda*, Xenophon Evangelopoulos* and Andrew I Cooper* 

* Department of Chemistry, University of Liverpool, United Kingdom

Feasibility Maps
• Non-overlap constrains are given by 

where ,  and 
•    - Fractional coordinates of the centroid of molecule 
•  - Euclidean coordinates of i-th atom of molecule 
•    - van der Waals radius of i-th atom of molecule 

∥ski1 − ski2
∥2 − (ri1 + ri2

)2 ≥ 0

ski = Ugkck + gkmi gk ∈ G Mk = {(mi, ri), i = 1,…, n}
ck Mk
mki M
rki M

2. Close-Packings of Volumetric Models of Molecules

(Figure a)

(Figure b)

(Figure c)

(Figure d)

Pseudo Code for Feasibility Maps

FUNCTION  deform :(ski ∈ Mk, slj ∈ Ml)

IF ∥ski1 − ski2∥
2 − (ri1 + ri2)

2 ≤ 0

U → UD

1.  = max {deform , }Ukl (ski, slj) i, j = 1,…, n

2.  = max {  | }
Uλ0
Ukl |Mk, Ml ∈ G /L

3.  = max {  | }
Uλ1
Uλ |Mk ∈ G /L, Ml ∈ 1 ± G /L (Figure e)b
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over	 	  [G]f = {H |ℱ(H) ≅ ℱ(G)}

1. Fibered-Orbifold-Constrained Program

where	  is a Geometric Fibered Orbifoldℱ(G) = 𝔼3/G
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